Modification of gelatin hydrogel for soil water retention: Physical blending or chemical combination with humic substance extracted from compost

IF 5.8 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2025-03-15 DOI:10.1016/j.eurpolymj.2025.113884
Lei Zeng, Yingle Chen, Song Wang, Chen Hou, Qiqi Huang, Zhihong Wang, Liu Yang
{"title":"Modification of gelatin hydrogel for soil water retention: Physical blending or chemical combination with humic substance extracted from compost","authors":"Lei Zeng,&nbsp;Yingle Chen,&nbsp;Song Wang,&nbsp;Chen Hou,&nbsp;Qiqi Huang,&nbsp;Zhihong Wang,&nbsp;Liu Yang","doi":"10.1016/j.eurpolymj.2025.113884","DOIUrl":null,"url":null,"abstract":"<div><div>Water scarcity is a critical problem around the world, and superabsorbent hydrogels has attracted growing attention in water management for handling water deficiency during agricultural and forestry practices. Herein, intending to apply gelatin hydrogel as soil conditioner, humic substances (HS) extracted from Chinese medicine residue compost were used to modify gelatin hydrogel through either physical mixing or chemical cross-linking. The results demonstrated that low level of HS could improve the hardness and rheological properties of the hydrogels, however, the gel strength significantly decreased when the concentration of HS rose up to 16 g/L. As revealed by TEM and XRD, chemical cross-linking reaction promoted the development of denser network structures, thereby improving the hardness and rheological properties of the hydrogels. Subsequently, applying HS at a concentration of 3 g/L was found to be preferable for enhancing the swelling ratio of the gelatin hydrogels, and lightweight substrates amended with the resultant hydrogels displayed superior water retention ratio (17.23 ± 0.79 % for GelHS3 and 17.74 ± 1.31 % for GelHS3-EDC). Furthermore, it was proved that HS-incorporated hydrogels can effectively keep moisture for the growth of Melaleuca alternifolia (Maiden &amp; Betche) Cheel saplings under drought stress. These findings suggest that humic substances can be utilized to modify hydrogels for use as soil conditioners.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"230 ","pages":"Article 113884"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001727","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Water scarcity is a critical problem around the world, and superabsorbent hydrogels has attracted growing attention in water management for handling water deficiency during agricultural and forestry practices. Herein, intending to apply gelatin hydrogel as soil conditioner, humic substances (HS) extracted from Chinese medicine residue compost were used to modify gelatin hydrogel through either physical mixing or chemical cross-linking. The results demonstrated that low level of HS could improve the hardness and rheological properties of the hydrogels, however, the gel strength significantly decreased when the concentration of HS rose up to 16 g/L. As revealed by TEM and XRD, chemical cross-linking reaction promoted the development of denser network structures, thereby improving the hardness and rheological properties of the hydrogels. Subsequently, applying HS at a concentration of 3 g/L was found to be preferable for enhancing the swelling ratio of the gelatin hydrogels, and lightweight substrates amended with the resultant hydrogels displayed superior water retention ratio (17.23 ± 0.79 % for GelHS3 and 17.74 ± 1.31 % for GelHS3-EDC). Furthermore, it was proved that HS-incorporated hydrogels can effectively keep moisture for the growth of Melaleuca alternifolia (Maiden & Betche) Cheel saplings under drought stress. These findings suggest that humic substances can be utilized to modify hydrogels for use as soil conditioners.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
An antifouling, robust and adhesive hydrogel for cartilage replacement Modification of gelatin hydrogel for soil water retention: Physical blending or chemical combination with humic substance extracted from compost Concept of symmetric tert-butyl pendant groups toward record-low dissipation factors of polyimides at high frequency Development of hydroxypropylated polyrotaxane networks with macromolecular PEG crosslinkers: Strategies for enhanced ionic conductivity Printable Polypeptide-Poly(ethylene glycol)-Polypeptide triblock copolymer hydrogels based on O-benzyl-L-serine and O-benzyl-L-tyrosine Building blocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1