{"title":"Development of hydroxypropylated polyrotaxane networks with macromolecular PEG crosslinkers: Strategies for enhanced ionic conductivity","authors":"Rui-Dong Wang, Yi-Fei Zhang, Xiao-Long Han, Yu-Kun Gao, Ting-Ting You, Peng-Gang Yin","doi":"10.1016/j.eurpolymj.2025.113893","DOIUrl":null,"url":null,"abstract":"<div><div>This work explores the design and optimization of polyrotaxane-based solid polymer electrolytes (SPEs) by adjusting crosslinker, composition, and polyrotaxane coverage ratio. By incorporating poly (ethylene glycol) (PEG) crosslinkers and refining their molecular weight and loading, we developed SPEs exhibiting high ionic conductivity (7.05 × 10<sup>−5</sup> S/cm at 30 °C), excellent flexibility (elongation at break over 270 %) and thermal resistance above 150 °C. Investigations into polyrotaxane with reduced coverage ratios revealed limitations in mechanical properties and ionic conductivity, emphasizing the importance of PEG crosslinker and the need of a robust cross-linked network. This study underscores the potential of polyrotaxane cross-linked networks for advanced SPE applications and provides insights for future design strategies in the field.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"230 ","pages":"Article 113893"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001818","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores the design and optimization of polyrotaxane-based solid polymer electrolytes (SPEs) by adjusting crosslinker, composition, and polyrotaxane coverage ratio. By incorporating poly (ethylene glycol) (PEG) crosslinkers and refining their molecular weight and loading, we developed SPEs exhibiting high ionic conductivity (7.05 × 10−5 S/cm at 30 °C), excellent flexibility (elongation at break over 270 %) and thermal resistance above 150 °C. Investigations into polyrotaxane with reduced coverage ratios revealed limitations in mechanical properties and ionic conductivity, emphasizing the importance of PEG crosslinker and the need of a robust cross-linked network. This study underscores the potential of polyrotaxane cross-linked networks for advanced SPE applications and provides insights for future design strategies in the field.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.