Printable Polypeptide-Poly(ethylene glycol)-Polypeptide triblock copolymer hydrogels based on O-benzyl-L-serine and O-benzyl-L-tyrosine Building blocks
Thi Ha My Phan , Yu-Hsun Yang , Jing-Ting Lin , Yi-Chen Ethan Li , Yi-Jou Chiu , Ling-Huei Wang , Jeng-Shiung Jan
{"title":"Printable Polypeptide-Poly(ethylene glycol)-Polypeptide triblock copolymer hydrogels based on O-benzyl-L-serine and O-benzyl-L-tyrosine Building blocks","authors":"Thi Ha My Phan , Yu-Hsun Yang , Jing-Ting Lin , Yi-Chen Ethan Li , Yi-Jou Chiu , Ling-Huei Wang , Jeng-Shiung Jan","doi":"10.1016/j.eurpolymj.2025.113887","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the hydrogelation, injectability, and printability of polypeptide-poly(ethylene glycol)-polypeptide triblock copolymer hydrogels derived from poly(O-benzyl-<sub>L</sub>-serine) (PBLS) and poly(O-benzyl-<sub>L</sub>-tyrosine) (PBLY) peptide segments. Experimental results demonstrate that the sheet-like PBLS and PBLY segments effectively function as hydrogelators, facilitating hydrogel formation in aqueous solutions. Key parameters such as polymer chain length, block ratio, and sheet-like peptide assemblies significantly influence the molecular packing of the triblock copolymers and the resulting nano-/microstructures of the hydrogel networks, thereby modulating their mechanical properties. Among all the studied samples, the PBLS<sub>6.5</sub>-PEG20000-PBLS<sub>6.5</sub> exhibits the best hydrogelation ability and mechanical property, highlighting the importance of the additional PEG chain entanglement. The d-spacing between peptide assemblies is found to be mainly dictated by PEG chain length. The as-prepared hydrogels exhibit exceptional shear-thinning behavior and rapid recovery, enabling high-fidelity patterning via direct-ink-writing printing (DIWP) technology. This study underscores the utility of PBLS and PBLY segments as hydrogelators when tethered to hydrophilic polymers like PEG. Furthermore, the as-prepared hydrogels, with superior mechanical properties, hold promise as inks for DIWP-based applications. Functional conjugation at the polymer chain ends offers potential for versatile applications in biomedical and engineering fields.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"229 ","pages":"Article 113887"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305725001752","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the hydrogelation, injectability, and printability of polypeptide-poly(ethylene glycol)-polypeptide triblock copolymer hydrogels derived from poly(O-benzyl-L-serine) (PBLS) and poly(O-benzyl-L-tyrosine) (PBLY) peptide segments. Experimental results demonstrate that the sheet-like PBLS and PBLY segments effectively function as hydrogelators, facilitating hydrogel formation in aqueous solutions. Key parameters such as polymer chain length, block ratio, and sheet-like peptide assemblies significantly influence the molecular packing of the triblock copolymers and the resulting nano-/microstructures of the hydrogel networks, thereby modulating their mechanical properties. Among all the studied samples, the PBLS6.5-PEG20000-PBLS6.5 exhibits the best hydrogelation ability and mechanical property, highlighting the importance of the additional PEG chain entanglement. The d-spacing between peptide assemblies is found to be mainly dictated by PEG chain length. The as-prepared hydrogels exhibit exceptional shear-thinning behavior and rapid recovery, enabling high-fidelity patterning via direct-ink-writing printing (DIWP) technology. This study underscores the utility of PBLS and PBLY segments as hydrogelators when tethered to hydrophilic polymers like PEG. Furthermore, the as-prepared hydrogels, with superior mechanical properties, hold promise as inks for DIWP-based applications. Functional conjugation at the polymer chain ends offers potential for versatile applications in biomedical and engineering fields.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.