{"title":"Ultrafast carrier dynamics and transient nonlinear absorption in chalcogenide perovskite BaZrS3","authors":"Pengxian You, Yadong Han, Junhong Yu, Yunfan Yang, Yakun Cao, Xiangyin Zhou, Liang Qiao, Jianbo Hu","doi":"10.1063/5.0228009","DOIUrl":null,"url":null,"abstract":"The unique combination of excellent semiconducting properties in halide perovskites and the high stability and nontoxicity of oxide perovskites has led to a recent surge in interest in chalcogenide perovskite BaZrS3 for optoelectronic applications. However, to realize its potential in future device technologies, a comprehensive understanding of photoexcited carrier dynamics and transient optical response is imperative, yet it remains largely unexplored for BaZrS3. In this work, employing transient absorption spectroscopy, we have revealed that photoexcited carriers in epitaxial BaZrS3 nanofilms exhibit two exponential decay components relating to optical phonon cooling and interband recombinations. Meanwhile, our investigation unveils an intriguing transient nonlinear absorption phenomenon in BaZrS3, characterized by the ultrafast switching of the pump-induced transparency (i.e., the saturable absorption) to the absorption enhancement within a timescale commensurate with the measurement resolution (hundreds of femtosecond). This study provides crucial dynamic insights essential for leveraging chalcogenide perovskites, such as BaZrS3, in the development of advanced optoelectronic devices.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0228009","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The unique combination of excellent semiconducting properties in halide perovskites and the high stability and nontoxicity of oxide perovskites has led to a recent surge in interest in chalcogenide perovskite BaZrS3 for optoelectronic applications. However, to realize its potential in future device technologies, a comprehensive understanding of photoexcited carrier dynamics and transient optical response is imperative, yet it remains largely unexplored for BaZrS3. In this work, employing transient absorption spectroscopy, we have revealed that photoexcited carriers in epitaxial BaZrS3 nanofilms exhibit two exponential decay components relating to optical phonon cooling and interband recombinations. Meanwhile, our investigation unveils an intriguing transient nonlinear absorption phenomenon in BaZrS3, characterized by the ultrafast switching of the pump-induced transparency (i.e., the saturable absorption) to the absorption enhancement within a timescale commensurate with the measurement resolution (hundreds of femtosecond). This study provides crucial dynamic insights essential for leveraging chalcogenide perovskites, such as BaZrS3, in the development of advanced optoelectronic devices.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.