Md Inzamam Ul Haque, Ariel Lebron, Frances Joan D. Alvarez, Jennifer F. Neal, Marc Mamak, Debangshu Mukherjee, Olga S. Ovchinnikova, Jacob D. Hinkle
{"title":"Deep learning-driven super-resolution in Raman hyperspectral imaging: Efficient high-resolution reconstruction from low-resolution data","authors":"Md Inzamam Ul Haque, Ariel Lebron, Frances Joan D. Alvarez, Jennifer F. Neal, Marc Mamak, Debangshu Mukherjee, Olga S. Ovchinnikova, Jacob D. Hinkle","doi":"10.1063/5.0228645","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) has become an indispensable tool in hyperspectral data analysis, automatically extracting valuable features from complex, high-dimensional datasets. Super-resolution reconstruction, an essential aspect of hyperspectral data, involves enhancing spatial resolution, particularly relevant to low-resolution hyperspectral data. Yet, the pursuit of super-resolution in hyperspectral analysis is fraught with challenges, including acquiring ground truth high-resolution data for training, generalization, and scalability. The pressing issue of extended spectral acquisition times, notably for high-resolution scans, is a significant roadblock in hyperspectral imaging. Super-resolution methods offer a promising solution by providing higher spatial resolution data to expedite data collection and yield more efficient outcomes. This paper delves into a practical application of these concepts using Raman imaging, where spectral acquisition times can be prohibitively long. In this context, DL-based super-resolution models demonstrate their efficacy by predicting and reconstructing high-resolution Raman data from low-resolution input, eliminating the need for resource-intensive high-resolution scans. While previous work often relied on substantial high-resolution datasets, this study showcases the ability to achieve similar outcomes even with limited data, presenting a more practical and cost-effective approach. The results offer a glimpse into the transformative potential of this technology to streamline hyperspectral imaging applications by saving valuable time and resources through the successful generation of high-resolution data from low-resolution inputs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0228645","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning (DL) has become an indispensable tool in hyperspectral data analysis, automatically extracting valuable features from complex, high-dimensional datasets. Super-resolution reconstruction, an essential aspect of hyperspectral data, involves enhancing spatial resolution, particularly relevant to low-resolution hyperspectral data. Yet, the pursuit of super-resolution in hyperspectral analysis is fraught with challenges, including acquiring ground truth high-resolution data for training, generalization, and scalability. The pressing issue of extended spectral acquisition times, notably for high-resolution scans, is a significant roadblock in hyperspectral imaging. Super-resolution methods offer a promising solution by providing higher spatial resolution data to expedite data collection and yield more efficient outcomes. This paper delves into a practical application of these concepts using Raman imaging, where spectral acquisition times can be prohibitively long. In this context, DL-based super-resolution models demonstrate their efficacy by predicting and reconstructing high-resolution Raman data from low-resolution input, eliminating the need for resource-intensive high-resolution scans. While previous work often relied on substantial high-resolution datasets, this study showcases the ability to achieve similar outcomes even with limited data, presenting a more practical and cost-effective approach. The results offer a glimpse into the transformative potential of this technology to streamline hyperspectral imaging applications by saving valuable time and resources through the successful generation of high-resolution data from low-resolution inputs.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.