Unveiling the potential of lithium fluoride phosphate (Li2MPO4F, M = Fe, V, Mn) for the next generation of lithium-ion batteries: A comparative study based on first principles and molecular dynamic simulations

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-06 DOI:10.1016/j.jpowsour.2024.235765
{"title":"Unveiling the potential of lithium fluoride phosphate (Li2MPO4F, M = Fe, V, Mn) for the next generation of lithium-ion batteries: A comparative study based on first principles and molecular dynamic simulations","authors":"","doi":"10.1016/j.jpowsour.2024.235765","DOIUrl":null,"url":null,"abstract":"<div><div>LiFePO<sub>4</sub> (LFP) cathode with olivine crystal structure has been a key player in safe and affordable energy storage, owing to its low-cost iron and high electrochemical stability within a voltage range of commercial electrolytes (2.8–3.4 V). To maintain these benefits while enhancing its energy density, Li<sub>2</sub>MPO<sub>4</sub>F was developed by introducing fluorine (F) and replacing iron with other transition metals (M). However, previous studies on these materials primarily measured performance within a limited voltage window (e.g., 2.5–4.5 V), making it challenging to analyze their performance under advanced electrolytes with a broader voltage range. In this study, we took a novel approach by utilizing first principles and molecular dynamic calculations to investigate the electrochemical performance of Li<sub>2</sub>MPO<sub>4</sub>F with three types of transition metals (M = V, Fe, Mn). This unique methodology, which includes calculations on theoretical voltages, atomic structures, and diffusion coefficient after structural optimization, allowed us to predict the impact of transition metals on cathode performance. By closely comparing the expected results, this study discusses the pros and cons of each cation substitution and suggests suitable cathode materials for batteries with high energy density and superior rate capability.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324017178","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

LiFePO4 (LFP) cathode with olivine crystal structure has been a key player in safe and affordable energy storage, owing to its low-cost iron and high electrochemical stability within a voltage range of commercial electrolytes (2.8–3.4 V). To maintain these benefits while enhancing its energy density, Li2MPO4F was developed by introducing fluorine (F) and replacing iron with other transition metals (M). However, previous studies on these materials primarily measured performance within a limited voltage window (e.g., 2.5–4.5 V), making it challenging to analyze their performance under advanced electrolytes with a broader voltage range. In this study, we took a novel approach by utilizing first principles and molecular dynamic calculations to investigate the electrochemical performance of Li2MPO4F with three types of transition metals (M = V, Fe, Mn). This unique methodology, which includes calculations on theoretical voltages, atomic structures, and diffusion coefficient after structural optimization, allowed us to predict the impact of transition metals on cathode performance. By closely comparing the expected results, this study discusses the pros and cons of each cation substitution and suggests suitable cathode materials for batteries with high energy density and superior rate capability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示氟化磷酸锂(Li2MPO4F,M = Fe、V、Mn)在下一代锂离子电池中的潜力:基于第一原理和分子动力学模拟的比较研究
具有橄榄石晶体结构的 LiFePO4(LFP)阴极因其低成本的铁和在商用电解质电压范围(2.8-3.4 V)内的高电化学稳定性,一直是安全且经济实惠的储能技术的关键。为了在保持这些优点的同时提高能量密度,Li2MPO4F 通过引入氟(F)和用其他过渡金属(M)代替铁而被开发出来。然而,以前对这些材料的研究主要测量的是有限电压窗口(如 2.5-4.5 V)内的性能,因此分析它们在电压范围更广的高级电解质下的性能具有挑战性。在这项研究中,我们采用了一种新颖的方法,利用第一原理和分子动力学计算来研究含有三种过渡金属(M = V、Fe、Mn)的 Li2MPO4F 的电化学性能。这种独特的方法包括理论电压、原子结构和结构优化后的扩散系数计算,使我们能够预测过渡金属对阴极性能的影响。通过密切比较预期结果,本研究讨论了每种阳离子替代的利弊,并为具有高能量密度和卓越速率能力的电池提出了合适的阴极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Optimized multi-stage constant current fast charging protocol suppressing lithium plating for lithium-ion batteries using reduced order electrochemical-thermal-life model Unveiling the potential of lithium fluoride phosphate (Li2MPO4F, M = Fe, V, Mn) for the next generation of lithium-ion batteries: A comparative study based on first principles and molecular dynamic simulations Nickel-mediated V4O7 as high-performance cathode material for aqueous Zn-ion batteries Quenching method introduced oxygen defect type Zn2V2O7·2H2O for long-life aqueous zinc ion batteries Chemical blowing agents for the fabrication of nitrogen and oxygen co-doped carbon nanofibers: Structural and supercapacitive study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1