Quenching method introduced oxygen defect type Zn2V2O7·2H2O for long-life aqueous zinc ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-06 DOI:10.1016/j.jpowsour.2024.235730
{"title":"Quenching method introduced oxygen defect type Zn2V2O7·2H2O for long-life aqueous zinc ion batteries","authors":"","doi":"10.1016/j.jpowsour.2024.235730","DOIUrl":null,"url":null,"abstract":"<div><div>Cost-effective and environment-friendly aqueous zinc ion batteries (AZIBs) are ideal for emerging energy storage. Focusing on enhancing the rate performance and cycling stability of AZIBs, various metal oxides and compounds as cathode materials have drawn extensive attention. The development of high-performance AZIBs cathode materials requires concentrating on the Zn<sup>2+</sup> intercalation strategy and exploring new materials more suitable for Zn<sup>2+</sup> intercalation to ensure more stable Zn<sup>2+</sup> storage. Additionally, a straightforward synthesis process considering economic effects and cost issues is essential. Herein, we introduce abundant oxygen vacancies on/near the surface of V<sub>2</sub>O<sub>5</sub> by quenching at high temperatures to provide more insertion sites for Zn<sup>2+</sup>. Then, Zn<sub>2</sub>V<sub>2</sub>O<sub>7</sub>·2H<sub>2</sub>O with oxygen vacancies is synthesized by reacting V<sub>2</sub>O<sub>5</sub> with ZnCl<sub>2</sub> through stirring and subsequent hydrothermal treatment (named QH ZVO). QH ZVO has a tunnel-like structure for stable Zn<sup>2+</sup> storage, combined with oxygen vacancy defects, enriches Zn<sup>2+</sup> storage quantity. Density functional theory simulations show that the quenching induced oxygen vacancy narrows the energy band gap of QH ZVO and accelerates electron transfer. The maximum specific capacity reaches 78.34 mAh g<sup>−1</sup> at 15 A g<sup>−1</sup> with 74.47 % capacity retention after 15,000 cycles. This work offers a new approach for efficient zinc storage and enhances the electrochemical stability of AZIBs.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324016823","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cost-effective and environment-friendly aqueous zinc ion batteries (AZIBs) are ideal for emerging energy storage. Focusing on enhancing the rate performance and cycling stability of AZIBs, various metal oxides and compounds as cathode materials have drawn extensive attention. The development of high-performance AZIBs cathode materials requires concentrating on the Zn2+ intercalation strategy and exploring new materials more suitable for Zn2+ intercalation to ensure more stable Zn2+ storage. Additionally, a straightforward synthesis process considering economic effects and cost issues is essential. Herein, we introduce abundant oxygen vacancies on/near the surface of V2O5 by quenching at high temperatures to provide more insertion sites for Zn2+. Then, Zn2V2O7·2H2O with oxygen vacancies is synthesized by reacting V2O5 with ZnCl2 through stirring and subsequent hydrothermal treatment (named QH ZVO). QH ZVO has a tunnel-like structure for stable Zn2+ storage, combined with oxygen vacancy defects, enriches Zn2+ storage quantity. Density functional theory simulations show that the quenching induced oxygen vacancy narrows the energy band gap of QH ZVO and accelerates electron transfer. The maximum specific capacity reaches 78.34 mAh g−1 at 15 A g−1 with 74.47 % capacity retention after 15,000 cycles. This work offers a new approach for efficient zinc storage and enhances the electrochemical stability of AZIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于长寿命锌离子水电池的氧缺陷型 Zn2V2O7-2H2O 的淬火方法
具有成本效益且环保的锌离子水电池(AZIBs)是新兴储能技术的理想选择。为了提高 AZIBs 的速率性能和循环稳定性,各种金属氧化物和化合物作为阴极材料引起了广泛关注。要开发高性能的 AZIBs 阴极材料,需要集中研究 Zn2+ 插层策略,探索更适合 Zn2+ 插层的新材料,以确保更稳定的 Zn2+ 储存。此外,考虑到经济效应和成本问题,直接的合成工艺也至关重要。在此,我们通过高温淬火在 V2O5 表面/近表面引入大量氧空位,为 Zn2+ 提供更多插入位点。然后,通过搅拌使 V2O5 与 ZnCl2 反应并随后进行水热处理,合成了具有氧空位的 Zn2V2O7-2H2O(命名为 QH ZVO)。QH ZVO 具有可稳定存储 Zn2+ 的隧道状结构,结合氧空位缺陷,丰富了 Zn2+ 的存储量。密度泛函理论模拟表明,淬火诱导的氧空位缩小了 QH ZVO 的能带隙,加速了电子转移。在 15 A g-1 的条件下,最大比容量达到 78.34 mAh g-1,循环 15,000 次后容量保持率为 74.47%。这项工作为高效储锌提供了一种新方法,并增强了 AZIBs 的电化学稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Optimized multi-stage constant current fast charging protocol suppressing lithium plating for lithium-ion batteries using reduced order electrochemical-thermal-life model Unveiling the potential of lithium fluoride phosphate (Li2MPO4F, M = Fe, V, Mn) for the next generation of lithium-ion batteries: A comparative study based on first principles and molecular dynamic simulations Nickel-mediated V4O7 as high-performance cathode material for aqueous Zn-ion batteries Quenching method introduced oxygen defect type Zn2V2O7·2H2O for long-life aqueous zinc ion batteries Chemical blowing agents for the fabrication of nitrogen and oxygen co-doped carbon nanofibers: Structural and supercapacitive study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1