Nickel-mediated V4O7 as high-performance cathode material for aqueous Zn-ion batteries

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL Journal of Power Sources Pub Date : 2024-11-06 DOI:10.1016/j.jpowsour.2024.235769
{"title":"Nickel-mediated V4O7 as high-performance cathode material for aqueous Zn-ion batteries","authors":"","doi":"10.1016/j.jpowsour.2024.235769","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium-based materials are currently favored by researchers due to their multi-structure, which can enhance the steric resistance and electrostatic repulsion during the (de)intercalation process of zinc ions. However, their low conductivity remains an inherent hindrance to their practical application. Therefore, finding a way to adjust the electronic structure of vanadium-based compounds is considered an effective strategy. Presently, we have designed a porous Ni-mediated V<sub>4</sub>O<sub>7</sub>, wherein the presence of oxygen defects and heterostructures in V<sub>4</sub>O<sub>7</sub>/NiO (O<sub>d</sub>-NVO-4) substantially improves the diffusion kinetics of ions/electrons and boosts the electrochemical performance. As anticipated, the Zn//V<sub>4</sub>O<sub>7</sub>/NiO battery exhibits a high specific capacity (348.6 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>), favorable rate capability (323.8 mAh g<sup>−1</sup> at 4 A g<sup>−1</sup>), and remarkable cycle stability (206.3 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup> after 2000 cycles). Additionally, the underlying mechanism of electrochemical zinc storage is comprehensively described through electrochemical kinetic analysis and theoretical calculations. These results unambiguously reveal the intrinsic link between the surface/interface structure and electrochemical performance of the cathode, offering a valuable reference for designing high-performance electrode materials.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037877532401721X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vanadium-based materials are currently favored by researchers due to their multi-structure, which can enhance the steric resistance and electrostatic repulsion during the (de)intercalation process of zinc ions. However, their low conductivity remains an inherent hindrance to their practical application. Therefore, finding a way to adjust the electronic structure of vanadium-based compounds is considered an effective strategy. Presently, we have designed a porous Ni-mediated V4O7, wherein the presence of oxygen defects and heterostructures in V4O7/NiO (Od-NVO-4) substantially improves the diffusion kinetics of ions/electrons and boosts the electrochemical performance. As anticipated, the Zn//V4O7/NiO battery exhibits a high specific capacity (348.6 mAh g−1 at 0.1 A g−1), favorable rate capability (323.8 mAh g−1 at 4 A g−1), and remarkable cycle stability (206.3 mAh g−1 at 2 A g−1 after 2000 cycles). Additionally, the underlying mechanism of electrochemical zinc storage is comprehensively described through electrochemical kinetic analysis and theoretical calculations. These results unambiguously reveal the intrinsic link between the surface/interface structure and electrochemical performance of the cathode, offering a valuable reference for designing high-performance electrode materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镍介导的 V4O7 作为水性 Zn 离子电池的高性能阴极材料
钒基材料目前受到研究人员的青睐,因为它们具有多种结构,在锌离子(脱)插层过程中可以增强立体阻力和静电排斥力。然而,它们的低导电性仍然是其实际应用的固有障碍。因此,寻找调整钒基化合物电子结构的方法被认为是一种有效的策略。目前,我们设计了一种以镍为介质的多孔 V4O7,其中 V4O7/NiO(Od-NVO-4)中氧缺陷和异质结构的存在大大改善了离子/电子的扩散动力学,并提高了电化学性能。正如预期的那样,Zn//V4O7/NiO 电池表现出较高的比容量(0.1 A g-1 时为 348.6 mAh g-1)、良好的速率能力(4 A g-1 时为 323.8 mAh g-1)和显著的循环稳定性(2000 次循环后,2 A g-1 时为 206.3 mAh g-1)。此外,还通过电化学动力学分析和理论计算全面描述了电化学储锌的基本机制。这些结果明确揭示了阴极表面/界面结构与电化学性能之间的内在联系,为设计高性能电极材料提供了宝贵的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
期刊最新文献
Optimized multi-stage constant current fast charging protocol suppressing lithium plating for lithium-ion batteries using reduced order electrochemical-thermal-life model Unveiling the potential of lithium fluoride phosphate (Li2MPO4F, M = Fe, V, Mn) for the next generation of lithium-ion batteries: A comparative study based on first principles and molecular dynamic simulations Nickel-mediated V4O7 as high-performance cathode material for aqueous Zn-ion batteries Quenching method introduced oxygen defect type Zn2V2O7·2H2O for long-life aqueous zinc ion batteries Chemical blowing agents for the fabrication of nitrogen and oxygen co-doped carbon nanofibers: Structural and supercapacitive study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1