Lei Zhang, Yongqiang Yang, Yongping Pu, Min Chen, Ning Xu, Xia Wu
{"title":"Novel NaNbO3-based, ferroelectric ceramics with excellent polarization and electric potential for antibacterial applications","authors":"Lei Zhang, Yongqiang Yang, Yongping Pu, Min Chen, Ning Xu, Xia Wu","doi":"10.1016/j.mtphys.2024.101583","DOIUrl":null,"url":null,"abstract":"Low surface electric potential (<1V) limits the large-scale commercial application of ferroelectric antibacterial ceramics. We propose a strategy based on charge-balancing doping to enhance polarization and potential in NaNbO<sub>3</sub>(NN)-based ceramics for disinfection application. The Mg<sup>2+</sup> modified NN showed a superior bactericidal effect greater than 80% for 1.5 h and 99.8% for 3 h without heating or ultrasonication, which is superior to other published works. This is mainly due to its excellent surface electric potential of 1.72 V and defect-related discharge current of 141.9 pA compared to NN and Ca<sup>2+</sup> modified NN. Ferroelectric properties demonstrated that NN-Mg possesses a lower <em>E</em><sub>C</sub> of ∼40 kV/cm and a higher <em>P</em><sub>r</sub> of ∼32 μC/cm<sup>2</sup>. Furthermore, the combination of XRD, Raman shift, PFM, and permittivity testing suggests that the smaller domain and enhanced ferroelectric properties in NN-Mg originated from amphoteric doping. Finally, simulation results of the electric field distribution indicated that NN-Mg had a stronger attraction or repulsion to bacteria with negatively charged surfaces.","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":null,"pages":null},"PeriodicalIF":10.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtphys.2024.101583","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Low surface electric potential (<1V) limits the large-scale commercial application of ferroelectric antibacterial ceramics. We propose a strategy based on charge-balancing doping to enhance polarization and potential in NaNbO3(NN)-based ceramics for disinfection application. The Mg2+ modified NN showed a superior bactericidal effect greater than 80% for 1.5 h and 99.8% for 3 h without heating or ultrasonication, which is superior to other published works. This is mainly due to its excellent surface electric potential of 1.72 V and defect-related discharge current of 141.9 pA compared to NN and Ca2+ modified NN. Ferroelectric properties demonstrated that NN-Mg possesses a lower EC of ∼40 kV/cm and a higher Pr of ∼32 μC/cm2. Furthermore, the combination of XRD, Raman shift, PFM, and permittivity testing suggests that the smaller domain and enhanced ferroelectric properties in NN-Mg originated from amphoteric doping. Finally, simulation results of the electric field distribution indicated that NN-Mg had a stronger attraction or repulsion to bacteria with negatively charged surfaces.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.