Elucidation of the key pathway for flavonol biosynthesis in golden Camellia and its application in genetic modification of tomato fruit metabolism

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2024-11-07 DOI:10.1093/hr/uhae308
Lina Jiang, Leiqin Han, Wenxuan Zhang, Yifei Gao, Xiaoyan Xu, Jia Chen, Shan Feng, Zhengqi Fan, Jiyuan Li, Xinlei Li, Hengfu Yin, Pengxiang Fan
{"title":"Elucidation of the key pathway for flavonol biosynthesis in golden Camellia and its application in genetic modification of tomato fruit metabolism","authors":"Lina Jiang, Leiqin Han, Wenxuan Zhang, Yifei Gao, Xiaoyan Xu, Jia Chen, Shan Feng, Zhengqi Fan, Jiyuan Li, Xinlei Li, Hengfu Yin, Pengxiang Fan","doi":"10.1093/hr/uhae308","DOIUrl":null,"url":null,"abstract":"Golden Camellia refers to a group of species in the genus Camellia that display yellow petals. The secondary metabolites in these petals hold ornamental significance and potential health benefits. However, the biosynthetic mechanisms governing the synthesis of these metabolites in golden petals remain elusive, and the exploitation of their bioactive components is not fully realized. This research involved the collection and analysis of 23 species of golden Camellia, leading to the discovery that flavonols, particularly quercetin 3-O-glucoside and quercetin 7-O-glucoside, are the primary contributors to the golden flower pigmentation. Integrative transcriptomics and co-expression network analyses pinpointed CnFLS1 as a crucial gene in the biosynthetic pathway, which, in conjunction with CnCHS, CnF3'H, and CnUFGT, orchestrates the specific pathway for flower color development. The enzyme assays revealed a high affinity and catalytic efficiency of CnFLS1 for DHQ, and transient expression of CnFLS1 in tobacco was shown to enhance the biosynthesis of quercetin flavonols, highlighting the pathway specificity in golden Camellia. Moreover, strategic transformations of cultivated tomatoes with various biosynthetic genes yielded transgenic lines exhibiting yellow fruit and quercetin-enriched flesh. These modified lines not only contained distinct flavonol components characteristic of golden Camellia but also demonstrated markedly improved antioxidant capabilities and enhanced resistance. The outcomes of this study not only elucidate the metabolic processes underlying the pigmentation of golden Camellia flowers but also provide a foundation for the development of novel tomato breeds through synthetic biology.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"18 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae308","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Golden Camellia refers to a group of species in the genus Camellia that display yellow petals. The secondary metabolites in these petals hold ornamental significance and potential health benefits. However, the biosynthetic mechanisms governing the synthesis of these metabolites in golden petals remain elusive, and the exploitation of their bioactive components is not fully realized. This research involved the collection and analysis of 23 species of golden Camellia, leading to the discovery that flavonols, particularly quercetin 3-O-glucoside and quercetin 7-O-glucoside, are the primary contributors to the golden flower pigmentation. Integrative transcriptomics and co-expression network analyses pinpointed CnFLS1 as a crucial gene in the biosynthetic pathway, which, in conjunction with CnCHS, CnF3'H, and CnUFGT, orchestrates the specific pathway for flower color development. The enzyme assays revealed a high affinity and catalytic efficiency of CnFLS1 for DHQ, and transient expression of CnFLS1 in tobacco was shown to enhance the biosynthesis of quercetin flavonols, highlighting the pathway specificity in golden Camellia. Moreover, strategic transformations of cultivated tomatoes with various biosynthetic genes yielded transgenic lines exhibiting yellow fruit and quercetin-enriched flesh. These modified lines not only contained distinct flavonol components characteristic of golden Camellia but also demonstrated markedly improved antioxidant capabilities and enhanced resistance. The outcomes of this study not only elucidate the metabolic processes underlying the pigmentation of golden Camellia flowers but also provide a foundation for the development of novel tomato breeds through synthetic biology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明金茶花黄酮醇生物合成的关键途径及其在番茄果实代谢基因改造中的应用
金茶花是指山茶花属中花瓣呈黄色的一组物种。这些花瓣中的次生代谢物具有观赏价值和潜在的保健作用。然而,金花瓣中合成这些代谢物的生物合成机制仍然难以捉摸,其生物活性成分的开发利用也尚未完全实现。这项研究收集并分析了 23 种金花茶,发现黄酮醇类化合物,尤其是槲皮素 3-O 葡萄糖苷和槲皮素 7-O 葡萄糖苷,是金花色素沉着的主要成分。综合转录组学和共表达网络分析发现,CnFLS1 是生物合成途径中的一个关键基因,它与 CnCHS、CnF3'H 和 CnUFGT 共同协调了花色形成的特定途径。酶测定显示,CnFLS1对DHQ具有很高的亲和力和催化效率,在烟草中瞬时表达CnFLS1可提高槲皮素黄酮醇的生物合成,这突出了金花茶的途径特异性。此外,用各种生物合成基因对栽培番茄进行策略性转化,获得了果实呈黄色、果肉富含槲皮素的转基因品系。这些经过改造的品系不仅含有金花茶特有的黄酮醇成分,而且抗氧化能力和抗逆性也明显提高。这项研究的成果不仅阐明了金茶花色素沉着的代谢过程,还为通过合成生物学技术开发新型番茄品种奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Phytop: A tool for visualizing and recognizing signals of incomplete lineage sorting and hybridization using species trees output from ASTRAL SlKNUCKLES regulates floral meristem activity and controls fruit size in Solanum lycopersicum The genus Paris: a fascinating resource for medicinal and botanical studies Tomato HAIRY MERISTEM4, expressed in the phloem, is required for proper shoot and fruit development SoNAC72-SoMYB44/SobHLH130 module contributes to flower color fading via regulating anthocyanin biosynthesis by directly binding to the SoUFGT1 promoter in lilac (Syringa oblata)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1