Yibing Zhang, Yibo Sun, Weifeng Du, Shaokun Sun, Shimiao Zhang, Mengyao Nie, Yudong Liu, Muhammad Irfan, Li Zhang, Lijing Chen
{"title":"Ethylene positively regulates anthocyanin synthesis in 'Viviana' lily via the LvMYB5-LvERF113-LvMYB1 module","authors":"Yibing Zhang, Yibo Sun, Weifeng Du, Shaokun Sun, Shimiao Zhang, Mengyao Nie, Yudong Liu, Muhammad Irfan, Li Zhang, Lijing Chen","doi":"10.1093/hr/uhaf059","DOIUrl":null,"url":null,"abstract":"Ethylene (ET) influences the synthesis of anthocyanins, although its regulatory effects can differ significantly across various plant species. In apples (Malus domestica), ET promotes anthocyanin synthesis, whereas in Arabidopsis thaliana, it inhibits its accumulation. Our research showed that ethephon (Eth), an ET derivative, promotes anthocyanin synthesis in 'Viviana' lilies, which has great potential in the cut flower industry. The regulatory mechanism whereby ethylene influences anthocyanin synthesis in lilies remains unclear. In this study, we screened and characterized an ET-induced ET response factors (ERFs), LvERF113, with inhibitory function. Our analyses suggested that LvERF113 could inhibit the negative regulatory function of LvMYB1 at transcriptional and posttranslational levels, promoting anthocyanin synthesis in 'Viviana' lily tepals. In addition, LvERF113 is positively regulated by LvMYB5, forming the LvMYB5-LvERF113-LvMYB1 module controlling anthocyanin synthesis by ET in 'Viviana' lily. These findings offer new insights into the ET regulatory network of anthocyanin synthesis and provide a theoretical basis for the application of ET derivatives in the cut flower industry.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"68 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf059","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene (ET) influences the synthesis of anthocyanins, although its regulatory effects can differ significantly across various plant species. In apples (Malus domestica), ET promotes anthocyanin synthesis, whereas in Arabidopsis thaliana, it inhibits its accumulation. Our research showed that ethephon (Eth), an ET derivative, promotes anthocyanin synthesis in 'Viviana' lilies, which has great potential in the cut flower industry. The regulatory mechanism whereby ethylene influences anthocyanin synthesis in lilies remains unclear. In this study, we screened and characterized an ET-induced ET response factors (ERFs), LvERF113, with inhibitory function. Our analyses suggested that LvERF113 could inhibit the negative regulatory function of LvMYB1 at transcriptional and posttranslational levels, promoting anthocyanin synthesis in 'Viviana' lily tepals. In addition, LvERF113 is positively regulated by LvMYB5, forming the LvMYB5-LvERF113-LvMYB1 module controlling anthocyanin synthesis by ET in 'Viviana' lily. These findings offer new insights into the ET regulatory network of anthocyanin synthesis and provide a theoretical basis for the application of ET derivatives in the cut flower industry.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.