Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2025-02-25 DOI:10.1093/hr/uhaf061
Shiwei Gao, Fei Wang, Shengnan Wang, Jiapeng Diao, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao
{"title":"Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds","authors":"Shiwei Gao, Fei Wang, Shengnan Wang, Jiapeng Diao, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao","doi":"10.1093/hr/uhaf061","DOIUrl":null,"url":null,"abstract":"The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ERE element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. A melatonin responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"27 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf061","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between ethylene and melatonin in the regulation of polyphenol metabolism and the underlying mechanism remain largely unclear. This work demonstrated that ethylene treatment increased melatonin biosynthesis by inducing the VvASMT expression in grape seeds. Ethylene-induced VvERF5 transactivated VvASMT via binding to the ERE element in its promoter. VvERF5 overexpression led to an increase in melatonin biosynthesis while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. A melatonin responsive element (MTRE) was identified, and melatonin-induced VvERF104 was found to bind to the MTRE of the VvMYB14 promoter and activate its expression. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the overexpression of VvERF5 or VvERF104 increased the expression of VvPAL, VvC4H and VvCHS, as well as the levels of the corresponding metabolites. Moreover, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Temporal fruit microbiome and immunity dynamics in post-harvest apple (Malus x domestica) Stable isotope labelling and gene expression analysis reveal dynamic nitrogen-supply mechanisms for rapid growth of Moso bamboo Ethylene positively regulates anthocyanin synthesis in 'Viviana' lily via the LvMYB5-LvERF113-LvMYB1 module Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds Developmental landscape and asymmetric gene expression in the leaf vasculature of Brassica rapa revealed by single-cell transcriptome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1