Green synthesis of a novel P/N/S containing bio-based flame retardant and its applications in poly(lactic acid): rapid self-extinguish, anti-dripping, and excellent mechanical performance
Yanxu Tian , Jiangang Zhang , Wen Cao , Xiong Liu , Xianming Zhang , Wenxing Chen , Jianna Bao
{"title":"Green synthesis of a novel P/N/S containing bio-based flame retardant and its applications in poly(lactic acid): rapid self-extinguish, anti-dripping, and excellent mechanical performance","authors":"Yanxu Tian , Jiangang Zhang , Wen Cao , Xiong Liu , Xianming Zhang , Wenxing Chen , Jianna Bao","doi":"10.1016/j.polymer.2024.127793","DOIUrl":null,"url":null,"abstract":"<div><div>Poly(lactic acid) (PLA), which is recognized as a potential biodegradable material, brings serious fire concern because of its flammability with heavily molten drips. In this investigation, a bio-based flame retardant named CS@ATMP@MI (CAM) consisting of chitosan (CS), amino trimethylene phosphonic acid (ATMP), and methionine (MI) was developed through a simple and environmental-friendly synthesis approach. CAM provided effective flame retardancy and anti-dripping ability without compromising mechanical properties. PLA/CAM composites achieved a UL-94 V-0 rating with 1.0 wt% CAM and a limited oxygen index value of 28.4 % with 3.0 wt% CAM. The high efficiency is due to the high phosphate content in ATMP and the strong coordination between CS, ATMP, and MI. The cone calorimetry tests showed that adding 2.0 wt% CAM increased the total smoke production from 0.2 to 0.6 m<sup>2</sup>, and thermogravimetric analysis/infrared spectrum analysis indicated that combustible gas production was reduced over 50 % with 3.0 wt% CAM, demonstrating that phosphorus-nitrogen synergy in CAM could effectively capture free radicals and released inert gases. Char analysis showed that the PLA/CAM composites could form a thicker and denser char layer during combustion due to phosphorus-sulfur synergy, which promoted char formation to shield mass transfer. PLA/CAM composites maintained excellent mechanical performance, with a 3.0 wt% CAM increasing tensile strength from 53.9 to 57.3 MPa and Young's modulus from 1782 to 2262 MPa. This study presented a sustainable method for synthesizing an effective bio-based flame retardant and a strategy for producing eco-friendly, fire-resistant PLA composites for industrial applications.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"315 ","pages":"Article 127793"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124011297","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Poly(lactic acid) (PLA), which is recognized as a potential biodegradable material, brings serious fire concern because of its flammability with heavily molten drips. In this investigation, a bio-based flame retardant named CS@ATMP@MI (CAM) consisting of chitosan (CS), amino trimethylene phosphonic acid (ATMP), and methionine (MI) was developed through a simple and environmental-friendly synthesis approach. CAM provided effective flame retardancy and anti-dripping ability without compromising mechanical properties. PLA/CAM composites achieved a UL-94 V-0 rating with 1.0 wt% CAM and a limited oxygen index value of 28.4 % with 3.0 wt% CAM. The high efficiency is due to the high phosphate content in ATMP and the strong coordination between CS, ATMP, and MI. The cone calorimetry tests showed that adding 2.0 wt% CAM increased the total smoke production from 0.2 to 0.6 m2, and thermogravimetric analysis/infrared spectrum analysis indicated that combustible gas production was reduced over 50 % with 3.0 wt% CAM, demonstrating that phosphorus-nitrogen synergy in CAM could effectively capture free radicals and released inert gases. Char analysis showed that the PLA/CAM composites could form a thicker and denser char layer during combustion due to phosphorus-sulfur synergy, which promoted char formation to shield mass transfer. PLA/CAM composites maintained excellent mechanical performance, with a 3.0 wt% CAM increasing tensile strength from 53.9 to 57.3 MPa and Young's modulus from 1782 to 2262 MPa. This study presented a sustainable method for synthesizing an effective bio-based flame retardant and a strategy for producing eco-friendly, fire-resistant PLA composites for industrial applications.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.