Xin-Xin Hu, Ying-Chuan Yin, Peng Xu, Min Wei, Wang Zhang
{"title":"Network toxicology and cell experiments reveal the mechanism of DEHP-induced diabetic nephropathy via Wnt signaling pathway.","authors":"Xin-Xin Hu, Ying-Chuan Yin, Peng Xu, Min Wei, Wang Zhang","doi":"10.1016/j.taap.2024.117144","DOIUrl":null,"url":null,"abstract":"<p><p>Di(2-ethylhexyl) phthalate (DEHP), a widely recognized endocrine disruptor, has been linked to the pathogenesis of diabetic nephropathy (DN) through its interference with hormonal and metabolic homeostasis. This study integrates network toxicology with cell-based assays to elucidate the molecular mechanisms of DEHP-induced DN, seeking to identify novel targets for toxicity assessment and therapeutic intervention. Through comprehensive screening across multiple toxicology and disease-related databases, six core genes (CTNNB1, EGFR, TNF, CCND1, BCL2, CASP3) were identified as shared mediators of DEHP exposure and DN. These genes are predominantly associated with the Wnt signaling pathway, a pivotal regulator of podocyte function, including cellular adhesion, differentiation, apoptosis, and inflammatory response. Mouse glomerular podocytes (MPC-5) exposed to graded concentrations of DEHP, with or without the Wnt pathway inhibitor XAV-939, displayed significant DEHP-induced disruptions: reduced cell adhesion, proliferation, and differentiation; increased autophagy, apoptosis, and migratory activity; elevated inflammatory mediator release; and pronounced activation of the Wnt signaling pathway, evidenced by upregulation of β-catenin, EGFR, TNF, CCND1, BCL2 and downregulation of CASP3. DEHP exposure further altered transcriptional activity and chromatin structure at key loci (CTNNB1, EGFR, and TNF). XAV-939 effectively mitigated these effects, underscoring the Wnt pathway's central role in DN progression under DEHP influence. These findings highlight the complex multi-target, multi-pathway interactions of DEHP in DN pathophysiology, offering deeper mechanistic insights and potential targets for therapeutic intervention against DEHP-induced nephrotoxicity.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a widely recognized endocrine disruptor, has been linked to the pathogenesis of diabetic nephropathy (DN) through its interference with hormonal and metabolic homeostasis. This study integrates network toxicology with cell-based assays to elucidate the molecular mechanisms of DEHP-induced DN, seeking to identify novel targets for toxicity assessment and therapeutic intervention. Through comprehensive screening across multiple toxicology and disease-related databases, six core genes (CTNNB1, EGFR, TNF, CCND1, BCL2, CASP3) were identified as shared mediators of DEHP exposure and DN. These genes are predominantly associated with the Wnt signaling pathway, a pivotal regulator of podocyte function, including cellular adhesion, differentiation, apoptosis, and inflammatory response. Mouse glomerular podocytes (MPC-5) exposed to graded concentrations of DEHP, with or without the Wnt pathway inhibitor XAV-939, displayed significant DEHP-induced disruptions: reduced cell adhesion, proliferation, and differentiation; increased autophagy, apoptosis, and migratory activity; elevated inflammatory mediator release; and pronounced activation of the Wnt signaling pathway, evidenced by upregulation of β-catenin, EGFR, TNF, CCND1, BCL2 and downregulation of CASP3. DEHP exposure further altered transcriptional activity and chromatin structure at key loci (CTNNB1, EGFR, and TNF). XAV-939 effectively mitigated these effects, underscoring the Wnt pathway's central role in DN progression under DEHP influence. These findings highlight the complex multi-target, multi-pathway interactions of DEHP in DN pathophysiology, offering deeper mechanistic insights and potential targets for therapeutic intervention against DEHP-induced nephrotoxicity.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.