Cell-type-specific splicing of transcription regulators and Ptbp1 by Rbfox1/2/3 in the developing neocortex.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2024-11-12 DOI:10.1523/JNEUROSCI.0822-24.2024
Xiangbin Ruan, Kaining Hu, Yalan Yang, Runwei Yang, Elizabeth Tseng, Bowei Kang, Aileen Kauffman, Rong Zhong, Xiaochang Zhang
{"title":"Cell-type-specific splicing of transcription regulators and <i>Ptbp1</i> by <i>Rbfox1/2/3</i> in the developing neocortex.","authors":"Xiangbin Ruan, Kaining Hu, Yalan Yang, Runwei Yang, Elizabeth Tseng, Bowei Kang, Aileen Kauffman, Rong Zhong, Xiaochang Zhang","doi":"10.1523/JNEUROSCI.0822-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>How master splicing regulators crosstalk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as <i>Meis2</i> and <i>Tead1</i> Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in <i>Ptbp1</i> Simultaneous ablation of <i>Rbfox1/2/3</i> in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of <i>Meis2</i> promotes <i>Tgfb3</i> transcription, while the <i>Meis2</i> neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. [The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.]<b>Significance Statement</b> How alternative splicing regulates cell-type-specific gene expression in the developing neocortex remains understudied. Here, analyses of sorted cell types and single-cell long-reads uncover cell-type-specific splicing that is enriched in transcription regulators. Rbfox proteins, including the pan-neuronal marker NeuN/Rbfox3, preferentially switch splice forms of transcription regulators and are required for radial neuronal migration. We further show that the progenitor and neuron isoforms of a transcription regulator <i>Meis2</i> function differently. Overall, this study suggests a cross-talk between alternative splicing and transcription for neuronal gene regulation.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.0822-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

How master splicing regulators crosstalk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as Meis2 and Tead1 Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in Ptbp1 Simultaneous ablation of Rbfox1/2/3 in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of Meis2 promotes Tgfb3 transcription, while the Meis2 neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. [The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.]Significance Statement How alternative splicing regulates cell-type-specific gene expression in the developing neocortex remains understudied. Here, analyses of sorted cell types and single-cell long-reads uncover cell-type-specific splicing that is enriched in transcription regulators. Rbfox proteins, including the pan-neuronal marker NeuN/Rbfox3, preferentially switch splice forms of transcription regulators and are required for radial neuronal migration. We further show that the progenitor and neuron isoforms of a transcription regulator Meis2 function differently. Overall, this study suggests a cross-talk between alternative splicing and transcription for neuronal gene regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在发育中的新皮层中,Rbfox1/2/3对转录调节因子和Ptbp1进行细胞类型特异性剪接。
在发育中的大脑中,主剪接调控因子如何相互影响以及转录调控因子在多大程度上被不同程度地剪接仍不清楚。在这里,对发育中的新皮质进行的细胞类型特异性 RNA-Seq 分析发现了 Rbfox1/2/3 基因的可变表达以及转录调节因子的丰富剪接事件,这些事件改变了蛋白质的同工型或诱导了无义介导的 mRNA 衰减。在径向神经胶质祖细胞中瞬时表达 Rbfox 蛋白会诱导神经元剪接事件,这些事件主要发生在 Meis2 和 Tead1 等转录调节因子中,令人惊讶的是,Rbfox 蛋白会促进 Ptbp1 中哺乳动物特异性替代外显子和以前未描述过的毒外显子的包含。此外,Meis2的祖细胞同工酶促进Tgfb3的转录,而Meis2的神经元同工酶则促进神经元的分化。这些观察结果表明,转录调节因子在发育中的新皮层细胞类型之间存在不同的剪接。[意义声明 替代剪接如何调节发育中的新皮质中细胞类型特异性基因的表达仍未得到充分研究。在这里,对分类细胞类型和单细胞长读数的分析发现了细胞类型特异性剪接,这种剪接富含转录调节因子。Rbfox蛋白(包括泛神经元标记物NeuN/Rbfox3)优先切换转录调节因子的剪接形式,并且是径向神经元迁移所必需的。我们进一步发现,转录调节因子 Meis2 的祖细胞和神经元异构体具有不同的功能。总之,这项研究表明,神经元基因调控的替代剪接和转录之间存在交叉对话。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. Decoding the Temporal Structures and Interactions of Multiple Face Dimensions Using Optically Pumped Magnetometer Magnetoencephalography (OPM-MEG). Growth Hormone Receptor in Lateral Hypothalamic Neurons Is Required for Increased Food-Seeking Behavior during Food Restriction in Male Mice. Kernels of Motor Memory Formation: Temporal Generalization in Bimanual Adaptation. A Dynamic Link between Respiration and Arousal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1