Yasmine Kamen, Timothy W Chapman, Enrique T Piedra, Matthew E Ciolkowski, Robert A Hill
{"title":"Transient Upregulation of Procaspase-3 during Oligodendrocyte Fate Decisions.","authors":"Yasmine Kamen, Timothy W Chapman, Enrique T Piedra, Matthew E Ciolkowski, Robert A Hill","doi":"10.1523/JNEUROSCI.2066-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes. Here, we discovered that differentiating oligodendrocytes transiently upregulate the zymogen procaspase-3 in both female and male mice, equipping these cells to make a survival decision during differentiation. Pharmacological inhibition of caspase-3 decreases oligodendrocyte density, indicating that procaspase-3 upregulation is linked to successful oligodendrocyte generation. Moreover, using procaspase-3 as a marker, we show that oligodendrocyte differentiation continues in the aging cortex and white matter. Taken together, our data establish procaspase-3 as a differentiating oligodendrocyte marker and provide insight into the underlying mechanisms occurring during the decision to integrate or die.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2066-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oligodendrocytes are generated throughout life and in neurodegenerative conditions from brain resident oligodendrocyte precursor cells (OPCs). The transition from OPC to oligodendrocyte involves a complex cascade of molecular and morphological states that position the cell to make a fate decision to integrate as a myelinating oligodendrocyte or die through apoptosis. Oligodendrocyte maturation impacts the cell death mechanisms that occur in degenerative conditions, but it is unclear if and how the cell death machinery changes as OPCs transition into oligodendrocytes. Here, we discovered that differentiating oligodendrocytes transiently upregulate the zymogen procaspase-3 in both female and male mice, equipping these cells to make a survival decision during differentiation. Pharmacological inhibition of caspase-3 decreases oligodendrocyte density, indicating that procaspase-3 upregulation is linked to successful oligodendrocyte generation. Moreover, using procaspase-3 as a marker, we show that oligodendrocyte differentiation continues in the aging cortex and white matter. Taken together, our data establish procaspase-3 as a differentiating oligodendrocyte marker and provide insight into the underlying mechanisms occurring during the decision to integrate or die.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles