Promoting Piezoelectricity in Amino Acids by Fluorination.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-17 DOI:10.1002/adma.202413049
Tan Hu, Jin Pyo Lee, Peiwen Huang, Amanda Jiamin Ong, Jian Yu, Shuihong Zhu, Yixuan Jiang, Zhuo Zhang, Meital Reches, Pooi See Lee
{"title":"Promoting Piezoelectricity in Amino Acids by Fluorination.","authors":"Tan Hu, Jin Pyo Lee, Peiwen Huang, Amanda Jiamin Ong, Jian Yu, Shuihong Zhu, Yixuan Jiang, Zhuo Zhang, Meital Reches, Pooi See Lee","doi":"10.1002/adma.202413049","DOIUrl":null,"url":null,"abstract":"<p><p>Bioinspired piezoelectric amino acids and peptides are attracting attention due to their designable sequences, versatile structures, low cost, and biodegradability. However, it remains a challenge to design amino acids and peptides with high piezoelectricity. Herein, a high piezoelectric amino acid by simple fluorination in its side chain is presented. The three phenylalanine derivatives are designed: Cbz-Phe, Cbz-Phe(4F), and Cbz-pentafluoro-Phe. The effect of fluorination on self-assembly and piezoelectricity is investigated. Cbz-Phe(4F) can self-assemble into crystals with a C2 space group, while Cbz-Phe and Cbz-pentafluoro-Phe form aggregated self-assemblies. Moreover, Cbz-Phe(4F) crystals exhibit a remarkably higher piezoelectric coefficient ( <math> <semantics><msubsup><mi>d</mi> <mrow><mspace></mspace> <mn>33</mn></mrow> <mrow><mspace></mspace> <mi>e</mi> <mi>f</mi> <mi>f</mi></mrow> </msubsup> <annotation>$d_{\\ 33}^{\\ eff}$</annotation></semantics> </math> ) of ≈17.9 pm V<sup>-1</sup> than Cbz-Phe and Cbz-pentafluoro-Phe. When fabricated as a piezoelectric nanogenerator, it generates an open-circuit voltage of ≈2.4 V. Importantly, Cbz-Phe(4F) crystals as a flexible piezoelectric sensor for the classification of various nuts and their quality sorting, which includes those as small as individual pumpkin seeds with high sensitivity and accuracy of sorting and quality checks. When mounted onto soft grippers, the sensor performs the tactile self-sensing functions. This work provides a promising approach to designing high piezoelectric amino acids by simple fluorination, offering exciting prospects for advancements in bioinspired piezoelectric materials in the application of smart agriculture and soft robotics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioinspired piezoelectric amino acids and peptides are attracting attention due to their designable sequences, versatile structures, low cost, and biodegradability. However, it remains a challenge to design amino acids and peptides with high piezoelectricity. Herein, a high piezoelectric amino acid by simple fluorination in its side chain is presented. The three phenylalanine derivatives are designed: Cbz-Phe, Cbz-Phe(4F), and Cbz-pentafluoro-Phe. The effect of fluorination on self-assembly and piezoelectricity is investigated. Cbz-Phe(4F) can self-assemble into crystals with a C2 space group, while Cbz-Phe and Cbz-pentafluoro-Phe form aggregated self-assemblies. Moreover, Cbz-Phe(4F) crystals exhibit a remarkably higher piezoelectric coefficient ( d 33 e f f $d_{\ 33}^{\ eff}$ ) of ≈17.9 pm V-1 than Cbz-Phe and Cbz-pentafluoro-Phe. When fabricated as a piezoelectric nanogenerator, it generates an open-circuit voltage of ≈2.4 V. Importantly, Cbz-Phe(4F) crystals as a flexible piezoelectric sensor for the classification of various nuts and their quality sorting, which includes those as small as individual pumpkin seeds with high sensitivity and accuracy of sorting and quality checks. When mounted onto soft grippers, the sensor performs the tactile self-sensing functions. This work provides a promising approach to designing high piezoelectric amino acids by simple fluorination, offering exciting prospects for advancements in bioinspired piezoelectric materials in the application of smart agriculture and soft robotics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过氟化促进氨基酸的压电性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Field-Programmable Topographic-Morphing Array for General-Purpose Lab-on-a-Chip Systems. Universal Approach for Managing Iodine Migration in Inverted Single-Junction and Tandem Perovskite Solar Cells. Poly(Lactic Acid): Recent Stereochemical Advances and New Materials Engineering. Promoting Piezoelectricity in Amino Acids by Fluorination. Spintronic Pathways in a Nonconjugated Radical Polymer Glass.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1