{"title":"Universal Approach for Managing Iodine Migration in Inverted Single-Junction and Tandem Perovskite Solar Cells.","authors":"Zhenhua Song, Kexuan Sun, Yuanyuan Meng, Zewei Zhu, Yaohua Wang, Weifu Zhang, Yang Bai, Xiaoyi Lu, Ruijia Tian, Chang Liu, Ziyi Ge","doi":"10.1002/adma.202410779","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant progress in the power-conversion efficiency (PCE) of perovskite solar cells (PSCs), the instability of devices remains a considerable obstacle for commercial applications. This instability primarily originates from the migration of halide ions-particularly iodide ions (I<sup>-</sup>). Under light exposure and thermal stress, I<sup>-</sup> migrates and transforms into I<sub>2</sub>, leading to irreversible degradation and performance loss. To address this issue, we introduced the additive 2,1,3-benzothiadiazole,5,6-difluoro-4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) (BT2F-2B) into the perovskite. The strong coordination between the unhybridized p orbital and lone-pair electrons from I<sup>-</sup> inhibits the deprotonation of MAI/FAI and the subsequent conversion of I<sup>-</sup> to I₂. The highly electronegative fluorine enhances its electrostatic interaction with I<sup>-</sup>. Consequently, the synergistic effect of BT2F-2B effectively suppresses the decomposition of perovskite and the defect density of the iodide vacancies. This approach delivers a PCE over 26% for inverted single-junction PSCs, with exceptional operational stability. According to the ISOS-L-3 testing protocol (maximum power point tracking at 85 °C and 50% relative humidity), treated PSCs retain 85% of their original PCE after 1000 h of aging. When the BT2F-2B is applied to a wide-bandgap (1.77 eV) perovskite system, the PCE of all-perovskite tandem solar cells reaches 27.8%, confirming the universality of the proposed strategy.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202410779","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant progress in the power-conversion efficiency (PCE) of perovskite solar cells (PSCs), the instability of devices remains a considerable obstacle for commercial applications. This instability primarily originates from the migration of halide ions-particularly iodide ions (I-). Under light exposure and thermal stress, I- migrates and transforms into I2, leading to irreversible degradation and performance loss. To address this issue, we introduced the additive 2,1,3-benzothiadiazole,5,6-difluoro-4,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) (BT2F-2B) into the perovskite. The strong coordination between the unhybridized p orbital and lone-pair electrons from I- inhibits the deprotonation of MAI/FAI and the subsequent conversion of I- to I₂. The highly electronegative fluorine enhances its electrostatic interaction with I-. Consequently, the synergistic effect of BT2F-2B effectively suppresses the decomposition of perovskite and the defect density of the iodide vacancies. This approach delivers a PCE over 26% for inverted single-junction PSCs, with exceptional operational stability. According to the ISOS-L-3 testing protocol (maximum power point tracking at 85 °C and 50% relative humidity), treated PSCs retain 85% of their original PCE after 1000 h of aging. When the BT2F-2B is applied to a wide-bandgap (1.77 eV) perovskite system, the PCE of all-perovskite tandem solar cells reaches 27.8%, confirming the universality of the proposed strategy.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.