Glauco Nobrega , Inês Santos Afonso , Beatriz Cardoso , Reinaldo Rodrigues de Souza , Ana Moita , João Eduardo Ribeiro , Rui A. Lima
{"title":"Exploring heat exchange in space: Recent advances in two-phase fluid experiments in microgravity","authors":"Glauco Nobrega , Inês Santos Afonso , Beatriz Cardoso , Reinaldo Rodrigues de Souza , Ana Moita , João Eduardo Ribeiro , Rui A. Lima","doi":"10.1016/j.tsep.2024.103025","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal regulation has assumed a central role in space expeditions ever since the inception of Sputnik-1 in 1957. Throughout the years, numerous techniques have been developed to regulate temperatures in spacecraft and space habitats. Initially, passive systems like heat shields and thermal linings were employed, while newer missions embrace active cooling using fluids like ammonia and water. With significant advancements in lunar exploration, thermal management systems have been integrated to ensure effective heat protection and dissipation. Experiments carried out in drop towers, parabolic flights, sounding rockets, and aboard the International Space Station (ISS) have yielded valuable insights into the physics of fluids, pool boiling, boiling in two-phase flow, and cooling phenomena. However, conducting tests in microgravity conditions can lead to lower performances, and accurate numerical simulations remain a challenge. At present, various organizations are conducting research to drive progress in thermal management and enhance the technology of space devices. This review describes the most recent advances in two-phase fluid experiments in microgravity. Furthermore, the major challenges that persist in this field are presented and discussed, along with observations on trends and possibilities for the future of thermal control in space. This review attempts to be a relevant guide for future research and developments on thermal control in space.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103025"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006437","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal regulation has assumed a central role in space expeditions ever since the inception of Sputnik-1 in 1957. Throughout the years, numerous techniques have been developed to regulate temperatures in spacecraft and space habitats. Initially, passive systems like heat shields and thermal linings were employed, while newer missions embrace active cooling using fluids like ammonia and water. With significant advancements in lunar exploration, thermal management systems have been integrated to ensure effective heat protection and dissipation. Experiments carried out in drop towers, parabolic flights, sounding rockets, and aboard the International Space Station (ISS) have yielded valuable insights into the physics of fluids, pool boiling, boiling in two-phase flow, and cooling phenomena. However, conducting tests in microgravity conditions can lead to lower performances, and accurate numerical simulations remain a challenge. At present, various organizations are conducting research to drive progress in thermal management and enhance the technology of space devices. This review describes the most recent advances in two-phase fluid experiments in microgravity. Furthermore, the major challenges that persist in this field are presented and discussed, along with observations on trends and possibilities for the future of thermal control in space. This review attempts to be a relevant guide for future research and developments on thermal control in space.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.