Kazuhiro Oda , Hiroki Oda , Yasushi Takase , Nao-Aki Noda
{"title":"Strength analysis due to thermal loading and tensile loading when metals are bonded by heat-curing adhesives","authors":"Kazuhiro Oda , Hiroki Oda , Yasushi Takase , Nao-Aki Noda","doi":"10.1016/j.tsep.2024.102967","DOIUrl":null,"url":null,"abstract":"<div><div>Heat-curing adhesives are widely used after being cured by heating to a temperature higher than room temperature. To evaluate the adhesive strength, therefore, it is necessary to consider both the thermal stress generated during heat curing and external loads such as tensile stress. Butt joint specimens are essential for evaluating tensile adhesive strength but also thermal strength. The interfacial strength can be discussed from the stress intensity factor (SIF) of a fictitious edge interfacial crack assumed at the interface end. This is because the SIF is controlled by the intensity of singular stress field (ISSF) at the crack-free interface end and a constant term associated with the thermal load. In this paper, a useful thermal SIF solution is proposed by superposing the SIF under tensile stress and the SIF under uniform interface stress associated with thermal loading. This general SIF expression provided under arbitrary material combination can be applied for predicting the tensile strength <span><math><mrow><msub><mi>σ</mi><mi>c</mi></msub></mrow></math></span> and critical temperature change <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> without performing new FEM calculations. The usefulness of the expression is confirmed through the adhesive strength of Aluminum/Epoxy butt joint experimentally obtained. Once the critical SIF <span><math><mrow><msub><mi>K</mi><mrow><mn>1</mn><mi>C</mi></mrow></msub></mrow></math></span> can be obtained from the tensile strength <span><math><mrow><msub><mi>σ</mi><mi>c</mi></msub></mrow></math></span> and the temperature change <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>, the adhesive strength can be expressed as <span><math><mrow><msub><mi>K</mi><mrow><mn>1</mn><mi>C</mi></mrow></msub></mrow></math></span> = constant of an assumed fictitious interface, and this can be used to predict critical <span><math><mrow><msub><mi>σ</mi><mi>c</mi></msub></mrow></math></span> for various temperature change <span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span> and for various adhesive bondline thickness <span><math><mrow><mi>h</mi></mrow></math></span>.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102967"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924005857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-curing adhesives are widely used after being cured by heating to a temperature higher than room temperature. To evaluate the adhesive strength, therefore, it is necessary to consider both the thermal stress generated during heat curing and external loads such as tensile stress. Butt joint specimens are essential for evaluating tensile adhesive strength but also thermal strength. The interfacial strength can be discussed from the stress intensity factor (SIF) of a fictitious edge interfacial crack assumed at the interface end. This is because the SIF is controlled by the intensity of singular stress field (ISSF) at the crack-free interface end and a constant term associated with the thermal load. In this paper, a useful thermal SIF solution is proposed by superposing the SIF under tensile stress and the SIF under uniform interface stress associated with thermal loading. This general SIF expression provided under arbitrary material combination can be applied for predicting the tensile strength and critical temperature change without performing new FEM calculations. The usefulness of the expression is confirmed through the adhesive strength of Aluminum/Epoxy butt joint experimentally obtained. Once the critical SIF can be obtained from the tensile strength and the temperature change , the adhesive strength can be expressed as = constant of an assumed fictitious interface, and this can be used to predict critical for various temperature change and for various adhesive bondline thickness .
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.