{"title":"Ultrasound-assisted aberration correction of transcranial photoacoustic imaging based on angular spectrum theory","authors":"Qiuqin Mao, Yingjie Feng, Chao Tao, Xiaojun Liu","doi":"10.1016/j.pacs.2024.100665","DOIUrl":null,"url":null,"abstract":"<div><div>To correct the refraction aberration induced by the skull in photoacoustic imaging, a method for phase distortion compensation is proposed based on the angular spectrum theory with the aid of ultrasonic signals. This method first updates the speed of sound distribution by iteratively performing aberration correction in the ultrasonic reconstruction. Then the speed of sound distribution obtained with ultrasound-assisted serves as prior knowledge to address phase distortion compensation by adjusting the phase shift factor of the wavefront in different media. Finally, the aberration-corrected ultrasonic-photoacoustic dual-modality image can be obtained. Numerical simulations and phantom experiments confirm the effectiveness of this method. Specifically, in simulations, the position error of the proposed method is reduced from −13.61 % to 1.27 % in depth compared to the method based on the reconstruction with constant speed. Moreover, a real ex-vivo rabbit skull experiment illustrates the potential biological application of the proposed method in transcranial photoacoustic imaging.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"40 ","pages":"Article 100665"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221359792400082X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To correct the refraction aberration induced by the skull in photoacoustic imaging, a method for phase distortion compensation is proposed based on the angular spectrum theory with the aid of ultrasonic signals. This method first updates the speed of sound distribution by iteratively performing aberration correction in the ultrasonic reconstruction. Then the speed of sound distribution obtained with ultrasound-assisted serves as prior knowledge to address phase distortion compensation by adjusting the phase shift factor of the wavefront in different media. Finally, the aberration-corrected ultrasonic-photoacoustic dual-modality image can be obtained. Numerical simulations and phantom experiments confirm the effectiveness of this method. Specifically, in simulations, the position error of the proposed method is reduced from −13.61 % to 1.27 % in depth compared to the method based on the reconstruction with constant speed. Moreover, a real ex-vivo rabbit skull experiment illustrates the potential biological application of the proposed method in transcranial photoacoustic imaging.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.