Yong Tao , Jiahao Wan , Yian Song , Xingyu Li , Baicun Wang , Tianmiao Wang , Yiru Wang
{"title":"A safety posture field framework for mobile manipulators based on human–robot interaction trend and platform-arm coupling motion","authors":"Yong Tao , Jiahao Wan , Yian Song , Xingyu Li , Baicun Wang , Tianmiao Wang , Yiru Wang","doi":"10.1016/j.rcim.2024.102903","DOIUrl":null,"url":null,"abstract":"<div><div>Mobile manipulators are increasingly deployed in industrial settings, such as material handling and workpiece loading, where they must safely interact with humans while efficiently completing tasks. Existing motion planning methods for mobile manipulators often struggle to ensure both safety and efficiency in dynamic human-robot interaction environments. This paper proposes a Safety Posture Field framework that addresses these limitations by firstly predicting human motion trends using the improved Long Short-Term Memory neural network and applying these predictions to potential field calculations for both the mobile platform and the robotic arm. During different stages of human-robot interaction, the mobile manipulator places varying emphasis on safety and efficiency while in motion. Additionally, when the robotic arm executes operations, a platform-arm coupling motion strategy is introduced when the potential field detects risks of singularity or local optima, preventing the robotic arm from becoming unstable or failing to reach the target pose in time. This strategy enhances the system's flexibility and operational stability. Comparative experiments in simulation and real-world settings confirm the ability of the framework to maintain high safety standards while improving task efficiency, making it suitable for industrial Human-Robot Interaction applications.</div></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"93 ","pages":"Article 102903"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073658452400190X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile manipulators are increasingly deployed in industrial settings, such as material handling and workpiece loading, where they must safely interact with humans while efficiently completing tasks. Existing motion planning methods for mobile manipulators often struggle to ensure both safety and efficiency in dynamic human-robot interaction environments. This paper proposes a Safety Posture Field framework that addresses these limitations by firstly predicting human motion trends using the improved Long Short-Term Memory neural network and applying these predictions to potential field calculations for both the mobile platform and the robotic arm. During different stages of human-robot interaction, the mobile manipulator places varying emphasis on safety and efficiency while in motion. Additionally, when the robotic arm executes operations, a platform-arm coupling motion strategy is introduced when the potential field detects risks of singularity or local optima, preventing the robotic arm from becoming unstable or failing to reach the target pose in time. This strategy enhances the system's flexibility and operational stability. Comparative experiments in simulation and real-world settings confirm the ability of the framework to maintain high safety standards while improving task efficiency, making it suitable for industrial Human-Robot Interaction applications.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.