{"title":"Influence of FA and HPMC on the fresh properties and anisotropy of 3D printing engineered cementitious composites (3DP-ECC)","authors":"Yali Ge , Jie Yao","doi":"10.1016/j.matlet.2024.137748","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the effect of material compositions on the fresh properties and anisotropy of 3DP-ECC, the shape retention and the anisotropy of the compressive strength of 3DP-ECC with different contents of fly ash (FA) and Hydroxypropyl methyl cellulose (HPMC) were studied. The research results indicated that FA could weaken the shape retention, but HPMC significantly enhanced the shape retention of the fresh slurry of 3DP-ECC. The compressive strength in different directions was ranked as Z > Y > X. With the increase of dosage (FA/HPMC), the isotropy in the compressive strength of 3DP-ECC with HPMC decreased, but the difference of 3DP-ECC with FA became more obvious gradually.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"381 ","pages":"Article 137748"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24018883","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effect of material compositions on the fresh properties and anisotropy of 3DP-ECC, the shape retention and the anisotropy of the compressive strength of 3DP-ECC with different contents of fly ash (FA) and Hydroxypropyl methyl cellulose (HPMC) were studied. The research results indicated that FA could weaken the shape retention, but HPMC significantly enhanced the shape retention of the fresh slurry of 3DP-ECC. The compressive strength in different directions was ranked as Z > Y > X. With the increase of dosage (FA/HPMC), the isotropy in the compressive strength of 3DP-ECC with HPMC decreased, but the difference of 3DP-ECC with FA became more obvious gradually.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive