Mohammed A Al-Masni, Abobakr Khalil Al-Shamiri, Dildar Hussain, Yeong Hyeon Gu
{"title":"A Unified Multi-Task Learning Model with Joint Reverse Optimization for Simultaneous Skin Lesion Segmentation and Diagnosis.","authors":"Mohammed A Al-Masni, Abobakr Khalil Al-Shamiri, Dildar Hussain, Yeong Hyeon Gu","doi":"10.3390/bioengineering11111173","DOIUrl":null,"url":null,"abstract":"<p><p>Classifying and segmenting skin cancer represent pivotal objectives for automated diagnostic systems that utilize dermoscopy images. However, these tasks present significant challenges due to the diverse shape variations of skin lesions and the inherently fuzzy nature of dermoscopy images, including low contrast and the presence of artifacts. Given the robust correlation between the classification of skin lesions and their segmentation, we propose that employing a combined learning method holds the promise of considerably enhancing the performance of both tasks. In this paper, we present a unified multi-task learning strategy that concurrently classifies abnormalities of skin lesions and allows for the joint segmentation of lesion boundaries. This approach integrates an optimization technique known as joint reverse learning, which fosters mutual enhancement through extracting shared features and limiting task dominance across the two tasks. The effectiveness of the proposed method was assessed using two publicly available datasets, ISIC 2016 and PH<sup>2</sup>, which included melanoma and benign skin cancers. In contrast to the single-task learning strategy, which solely focuses on either classification or segmentation, the experimental findings demonstrated that the proposed network improves the diagnostic capability of skin tumor screening and analysis. The proposed method achieves a significant segmentation performance on skin lesion boundaries, with Dice Similarity Coefficients (DSC) of 89.48% and 88.81% on the ISIC 2016 and PH<sup>2</sup> datasets, respectively. Additionally, our multi-task learning approach enhances classification, increasing the F1 score from 78.26% (baseline ResNet50) to 82.07% on ISIC 2016 and from 82.38% to 85.50% on PH<sup>2</sup>. This work showcases its potential applicability across varied clinical scenarios.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11111173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Classifying and segmenting skin cancer represent pivotal objectives for automated diagnostic systems that utilize dermoscopy images. However, these tasks present significant challenges due to the diverse shape variations of skin lesions and the inherently fuzzy nature of dermoscopy images, including low contrast and the presence of artifacts. Given the robust correlation between the classification of skin lesions and their segmentation, we propose that employing a combined learning method holds the promise of considerably enhancing the performance of both tasks. In this paper, we present a unified multi-task learning strategy that concurrently classifies abnormalities of skin lesions and allows for the joint segmentation of lesion boundaries. This approach integrates an optimization technique known as joint reverse learning, which fosters mutual enhancement through extracting shared features and limiting task dominance across the two tasks. The effectiveness of the proposed method was assessed using two publicly available datasets, ISIC 2016 and PH2, which included melanoma and benign skin cancers. In contrast to the single-task learning strategy, which solely focuses on either classification or segmentation, the experimental findings demonstrated that the proposed network improves the diagnostic capability of skin tumor screening and analysis. The proposed method achieves a significant segmentation performance on skin lesion boundaries, with Dice Similarity Coefficients (DSC) of 89.48% and 88.81% on the ISIC 2016 and PH2 datasets, respectively. Additionally, our multi-task learning approach enhances classification, increasing the F1 score from 78.26% (baseline ResNet50) to 82.07% on ISIC 2016 and from 82.38% to 85.50% on PH2. This work showcases its potential applicability across varied clinical scenarios.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering