Joseph Finkelstein, Aref Smiley, Christina Echeverria, Kathi Mooney
{"title":"AI-Driven Prediction of Symptom Trajectories in Cancer Care: A Deep Learning Approach for Chemotherapy Management.","authors":"Joseph Finkelstein, Aref Smiley, Christina Echeverria, Kathi Mooney","doi":"10.3390/bioengineering11111172","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an advanced method for predicting symptom escalation in chemotherapy patients using Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs). The accurate prediction of symptom escalation is critical in cancer care to enable timely interventions and improve symptom management to enhance patients' quality of life during treatment. The analytical dataset consists of daily self-reported symptom logs from chemotherapy patients, including a wide range of symptoms, such as nausea, fatigue, and pain. The original dataset was highly imbalanced, with approximately 84% of the data containing no symptom escalation. The data were resampled into varying interval lengths to address this imbalance and improve the model's ability to detect symptom escalation (n = 3 to n = 7 days). This allowed the model to predict significant changes in symptom severity across these intervals. The results indicate that shorter intervals (n = 3 days) yielded the highest overall performance, with the CNN model achieving an accuracy of 81%, precision of 87%, recall of 80%, and an F1 score of 83%. This was an improvement over the LSTM model, which had an accuracy of 79%, precision of 85%, recall of 79%, and an F1 score of 82%. The model's accuracy and recall declined as the interval length increased, though precision remained relatively stable. The findings demonstrate that both CNN's temporospatial feature extraction and LSTM's temporal modeling effectively capture escalation patterns in symptom progression. By integrating these predictive models into digital health systems, healthcare providers can offer more personalized and proactive care, enabling earlier interventions that may reduce symptom burden and improve treatment adherence. Ultimately, this approach has the potential to significantly enhance the overall quality of life for chemotherapy patients by providing real-time insights into symptom trajectories and guiding clinical decision making.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11592055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11111172","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an advanced method for predicting symptom escalation in chemotherapy patients using Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs). The accurate prediction of symptom escalation is critical in cancer care to enable timely interventions and improve symptom management to enhance patients' quality of life during treatment. The analytical dataset consists of daily self-reported symptom logs from chemotherapy patients, including a wide range of symptoms, such as nausea, fatigue, and pain. The original dataset was highly imbalanced, with approximately 84% of the data containing no symptom escalation. The data were resampled into varying interval lengths to address this imbalance and improve the model's ability to detect symptom escalation (n = 3 to n = 7 days). This allowed the model to predict significant changes in symptom severity across these intervals. The results indicate that shorter intervals (n = 3 days) yielded the highest overall performance, with the CNN model achieving an accuracy of 81%, precision of 87%, recall of 80%, and an F1 score of 83%. This was an improvement over the LSTM model, which had an accuracy of 79%, precision of 85%, recall of 79%, and an F1 score of 82%. The model's accuracy and recall declined as the interval length increased, though precision remained relatively stable. The findings demonstrate that both CNN's temporospatial feature extraction and LSTM's temporal modeling effectively capture escalation patterns in symptom progression. By integrating these predictive models into digital health systems, healthcare providers can offer more personalized and proactive care, enabling earlier interventions that may reduce symptom burden and improve treatment adherence. Ultimately, this approach has the potential to significantly enhance the overall quality of life for chemotherapy patients by providing real-time insights into symptom trajectories and guiding clinical decision making.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering