Virtual histopathology methods in medical imaging - a systematic review.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2024-11-26 DOI:10.1186/s12880-024-01498-9
Muhammad Talha Imran, Imran Shafi, Jamil Ahmad, Muhammad Fasih Uddin Butt, Santos Gracia Villar, Eduardo Garcia Villena, Tahir Khurshaid, Imran Ashraf
{"title":"Virtual histopathology methods in medical imaging - a systematic review.","authors":"Muhammad Talha Imran, Imran Shafi, Jamil Ahmad, Muhammad Fasih Uddin Butt, Santos Gracia Villar, Eduardo Garcia Villena, Tahir Khurshaid, Imran Ashraf","doi":"10.1186/s12880-024-01498-9","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"24 1","pages":"318"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01498-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual histopathology is an emerging technology in medical imaging that utilizes advanced computational methods to analyze tissue images for more precise disease diagnosis. Traditionally, histopathology relies on manual techniques and expertise, often resulting in time-consuming processes and variability in diagnoses. Virtual histopathology offers a more consistent, and automated approach, employing techniques like machine learning, deep learning, and image processing to simulate staining and enhance tissue analysis. This review explores the strengths, limitations, and clinical applications of these methods, highlighting recent advancements in virtual histopathological approaches. In addition, important areas are identified for future research to improve diagnostic accuracy and efficiency in clinical settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学成像中的虚拟组织病理学方法--系统综述。
虚拟组织病理学是医学影像领域的一项新兴技术,它利用先进的计算方法分析组织图像,以进行更精确的疾病诊断。传统的组织病理学依赖于人工技术和专业知识,往往导致过程耗时,诊断结果多变。虚拟组织病理学采用机器学习、深度学习和图像处理等技术来模拟染色和增强组织分析,提供了一种更一致、更自动化的方法。本综述探讨了这些方法的优势、局限性和临床应用,重点介绍了虚拟组织病理学方法的最新进展。此外,还确定了未来研究的重要领域,以提高临床诊断的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
3D morphometric analysis of the epiglottis using CBCT: age and gender differences. Deep learning model for the automated detection and classification of central canal and neural foraminal stenosis upon cervical spine magnetic resonance imaging. Virtual histopathology methods in medical imaging - a systematic review. Establishment of an MRI-based radiomics model for distinguishing between intramedullary spinal cord tumor and tumefactive demyelinating lesion. In vitro detection of cancer cells using a novel fluorescent choline derivative.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1