Comparison of pointwise encoding time reduction with radial acquisition (PETRA) imaging with conventional MR imaging for the diagnosis of traumatic fractures in children.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-02-18 DOI:10.1186/s12880-025-01594-4
Xiamei Zhuang, Ke Jin, Xiaoming Li, Junwei Li, Yan Yin, Zhang Huiting, Hong Liu, Meitao Liu
{"title":"Comparison of pointwise encoding time reduction with radial acquisition (PETRA) imaging with conventional MR imaging for the diagnosis of traumatic fractures in children.","authors":"Xiamei Zhuang, Ke Jin, Xiaoming Li, Junwei Li, Yan Yin, Zhang Huiting, Hong Liu, Meitao Liu","doi":"10.1186/s12880-025-01594-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to determine whether adding pointwise encoding time reduction with radial acquisition (PETRA) images to conventional magnetic resonance (MR) imaging improves the depiction and characterization of traumatic fractures in pediatric patients.</p><p><strong>Methods: </strong>Twenty-nine pediatric subjects with fractures and a control group of twenty individuals without fractures were included. Two independent observers assessed conventional MR, PETRA, and combined MRI + PETRA images, documenting the presence of fractures, bone fragments, callus formation, displacement, size, and angles of fractures.</p><p><strong>Results: </strong>Diagnostic accuracy was higher for combined conventional MR with PETRA images than for conventional MR or PETRA alone in detecting fractures (area under curve (AUC): 0.86 for conventional MR, 0.97 for PETRA, 1.00 for combined), callus formation (AUC: 0.67 conventional MR, 0.82 PETRA, 0.86 combined), and bone fragments (AUC: 0.89 conventional MR, 0.96 PETRA, 0.97 combined). PETRA images improved agreement in detecting fractures, especially in the ulna/radius (κ = 0.46 conventional MR, 1.00 PETRA, 1.00 combined) and fibula/talus (κ = 0.42 conventional MR, 1.00 PETRA, 1.00 combined), compared to CT. PETRA also enhanced agreement in characterizing callus formation, bone fragments, displacement, size and fracture angles (intraclass correlation > 0.88 for all comparisons), compared to CT. Addition of PETRA images revealed that the differences in the measurements of fragment displacement, size, and fracture angle compared to CT, were not statistically significant (all p > 0.05).</p><p><strong>Conclusion: </strong>Adding PETRA images to conventional MR enhances diagnostic accuracy and reliability in detecting fractures among pediatric patients compared to conventional MR alone.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"55"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01594-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This study aimed to determine whether adding pointwise encoding time reduction with radial acquisition (PETRA) images to conventional magnetic resonance (MR) imaging improves the depiction and characterization of traumatic fractures in pediatric patients.

Methods: Twenty-nine pediatric subjects with fractures and a control group of twenty individuals without fractures were included. Two independent observers assessed conventional MR, PETRA, and combined MRI + PETRA images, documenting the presence of fractures, bone fragments, callus formation, displacement, size, and angles of fractures.

Results: Diagnostic accuracy was higher for combined conventional MR with PETRA images than for conventional MR or PETRA alone in detecting fractures (area under curve (AUC): 0.86 for conventional MR, 0.97 for PETRA, 1.00 for combined), callus formation (AUC: 0.67 conventional MR, 0.82 PETRA, 0.86 combined), and bone fragments (AUC: 0.89 conventional MR, 0.96 PETRA, 0.97 combined). PETRA images improved agreement in detecting fractures, especially in the ulna/radius (κ = 0.46 conventional MR, 1.00 PETRA, 1.00 combined) and fibula/talus (κ = 0.42 conventional MR, 1.00 PETRA, 1.00 combined), compared to CT. PETRA also enhanced agreement in characterizing callus formation, bone fragments, displacement, size and fracture angles (intraclass correlation > 0.88 for all comparisons), compared to CT. Addition of PETRA images revealed that the differences in the measurements of fragment displacement, size, and fracture angle compared to CT, were not statistically significant (all p > 0.05).

Conclusion: Adding PETRA images to conventional MR enhances diagnostic accuracy and reliability in detecting fractures among pediatric patients compared to conventional MR alone.

Clinical trial number: Not applicable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Comparison of pointwise encoding time reduction with radial acquisition (PETRA) imaging with conventional MR imaging for the diagnosis of traumatic fractures in children. Application of CT-based radiomics combined with laboratory tests such as AFP and PIVKA-II in preoperative prediction of pathologic grade of hepatocellular carcinoma. Comparative analysis of intestinal tumor segmentation in PET CT scans using organ based and whole body deep learning. Correction: Distinct circle of willis anatomical configurations in healthy preterm born adults: a 3D time-of-flight magnetic resonance angiography study. Radiomics model building from multiparametric MRI to predict Ki-67 expression in patients with primary central nervous system lymphomas: a multicenter study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1