Effective thermal conductivity of composites using homogenization

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2024-12-01 DOI:10.1016/j.tsep.2024.103078
Ilige S. Hage
{"title":"Effective thermal conductivity of composites using homogenization","authors":"Ilige S. Hage","doi":"10.1016/j.tsep.2024.103078","DOIUrl":null,"url":null,"abstract":"<div><div>Composite materials are extensively used in engineering applications due to their customizable properties and high performance. Determining the equivalent homogenized properties of composites, such as thermal conductivity, is crucial for their effective use. Various theoretical, analytical, and experimental methods have been developed to assess these properties. This study investigates the effective thermal conductivity of composites using a deterministically based procedure for thermal analysis. This procedure accounts for the combined influences of the inclusions’ volume fractions, shapes, orientations, and locations within the matrix to determine the effective thermal conductivity of composites. The specific composite analyzed consists of a cubical PLA matrix with a single spherical or elliptical void inclusion with perfect interfaces. For that purpose, an analytical approach was developed, and MATLAB® code was created to calculate the effective thermal conductivity tensor. To benchmark the analytical results, comparisons were made against numerical finite element modeling (FEM) results conducted using ANSYS®; in addition, to previously reported analytical models from the literature. Corroboration was also obtained by comparing the results against experimental data from the literature. The accuracy of the proposed homogenization scheme was demonstrated by achieving a low mean absolute percentage error (MAPE) compared to FEM (2.88%) and to the experimental results (2.72% for void inclusion and 6.99% for filled inclusion). Additionally, a high R-squared (R<sup>2</sup>) value of 0.986 was achieved compared to FEM, and values of 0.97 and 0.998 were achieved compared to the experimental results for void and filled inclusions, respectively.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"56 ","pages":"Article 103078"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924006966","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Composite materials are extensively used in engineering applications due to their customizable properties and high performance. Determining the equivalent homogenized properties of composites, such as thermal conductivity, is crucial for their effective use. Various theoretical, analytical, and experimental methods have been developed to assess these properties. This study investigates the effective thermal conductivity of composites using a deterministically based procedure for thermal analysis. This procedure accounts for the combined influences of the inclusions’ volume fractions, shapes, orientations, and locations within the matrix to determine the effective thermal conductivity of composites. The specific composite analyzed consists of a cubical PLA matrix with a single spherical or elliptical void inclusion with perfect interfaces. For that purpose, an analytical approach was developed, and MATLAB® code was created to calculate the effective thermal conductivity tensor. To benchmark the analytical results, comparisons were made against numerical finite element modeling (FEM) results conducted using ANSYS®; in addition, to previously reported analytical models from the literature. Corroboration was also obtained by comparing the results against experimental data from the literature. The accuracy of the proposed homogenization scheme was demonstrated by achieving a low mean absolute percentage error (MAPE) compared to FEM (2.88%) and to the experimental results (2.72% for void inclusion and 6.99% for filled inclusion). Additionally, a high R-squared (R2) value of 0.986 was achieved compared to FEM, and values of 0.97 and 0.998 were achieved compared to the experimental results for void and filled inclusions, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用均质化的复合材料的有效导热系数
复合材料因其可定制性和高性能而广泛应用于工程领域。确定复合材料的等效均质性,如导热性,对其有效使用至关重要。各种理论的、分析的和实验的方法被开发出来评估这些特性。本研究使用基于确定性的热分析程序来研究复合材料的有效导热系数。该程序考虑了夹杂物体积分数、形状、取向和基体内位置的综合影响,以确定复合材料的有效导热系数。所分析的特定复合材料由立方体聚乳酸基体和具有完美界面的单个球形或椭圆形空洞包裹体组成。为此,开发了一种分析方法,并创建了MATLAB®代码来计算有效导热张量。为了对分析结果进行基准测试,将分析结果与ANSYS®的数值有限元模拟结果进行了比较;此外,以前报道的分析模型从文献。通过将结果与文献中的实验数据进行比较,也得到了确证。与有限元法(2.88%)和实验结果(空隙包裹体的2.72%和填充包裹体的6.99%)相比,所提出的均匀化方案的平均绝对百分比误差(MAPE)较低,证明了该方案的准确性。与有限元相比,该方法的r平方(R2)值较高,为0.986;与实验结果相比,空心夹杂物和充填夹杂物的r平方(R2)值分别为0.97和0.998。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
Heat transfer phenomena and performance investigations for 3D fin-and-tube pulsating heat pipe heat exchanger under vertical and horizontal orientations Numerical exploration of heat transfer and friction factor in corrugated dual-pipe heat exchangers using SiO2 and CuO nanofluids Enhancing Part-Load performance of the simple recuperated supercritical carbon dioxide cycle through shaft separation The influence of microgrooves on the dynamics of drop spreading on textured surfaces Real-Time prediction of pool fire burning rates under complex heat transfer effects influenced by ullage height: A comparative study of BPNN and SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1