Kaicheng Xu , Hongrui Huang , Hanqi Xu , Zijian Lu , Weilin Yang , Liqing Zhang
{"title":"Experimental research on fatigue behavior of concrete under acid rain corrosive environment","authors":"Kaicheng Xu , Hongrui Huang , Hanqi Xu , Zijian Lu , Weilin Yang , Liqing Zhang","doi":"10.1016/j.conbuildmat.2024.139376","DOIUrl":null,"url":null,"abstract":"<div><div>Concrete infrastructures such as high-speed railway bridges, road pavements, and airport runways in acid rain areas are severely affected by fatigue loading and environmental corrosion. To investigate the impact of acid rain corrosion on the fatigue resistance of concrete, 12 groups of concrete specimens were exposed to acid rain spray tests and then subjected to bending fatigue testing. These tests comparatively examined the impact of different stress levels and corrosion ages on the concrete's fatigue life, strain, and damage pattern. Additionally, the fatigue life reliability of the concrete was analyzed using the Weibull distribution theory and equations were developed to predict the fatigue life of the concrete under different probabilities of failure. The results indicate that both stress level and acid rain corrosion age significantly affect the ultimate strain and fatigue life of concrete. High stress levels combined with prolonged acid rain exposure severely degrade the fatigue performance of the concrete. The fatigue life of the concrete follows a Weibull distribution, and the P-S-N curves and fatigue life equations developed based on data from various failure probabilities show a high linear association with values larger than 0.9. These findings can serve as a reference for predicting the fatigue life of concrete in areas affected by acid rain.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"457 ","pages":"Article 139376"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824045185","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Concrete infrastructures such as high-speed railway bridges, road pavements, and airport runways in acid rain areas are severely affected by fatigue loading and environmental corrosion. To investigate the impact of acid rain corrosion on the fatigue resistance of concrete, 12 groups of concrete specimens were exposed to acid rain spray tests and then subjected to bending fatigue testing. These tests comparatively examined the impact of different stress levels and corrosion ages on the concrete's fatigue life, strain, and damage pattern. Additionally, the fatigue life reliability of the concrete was analyzed using the Weibull distribution theory and equations were developed to predict the fatigue life of the concrete under different probabilities of failure. The results indicate that both stress level and acid rain corrosion age significantly affect the ultimate strain and fatigue life of concrete. High stress levels combined with prolonged acid rain exposure severely degrade the fatigue performance of the concrete. The fatigue life of the concrete follows a Weibull distribution, and the P-S-N curves and fatigue life equations developed based on data from various failure probabilities show a high linear association with values larger than 0.9. These findings can serve as a reference for predicting the fatigue life of concrete in areas affected by acid rain.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.