Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2024-11-28 DOI:10.1038/s41524-024-01445-w
Christopher D. Woodgate, George A. Marchant, Livia B. Pártay, Julie B. Staunton
{"title":"Structure, short-range order, and phase stability of the AlxCrFeCoNi high-entropy alloy: insights from a perturbative, DFT-based analysis","authors":"Christopher D. Woodgate, George A. Marchant, Livia B. Pártay, Julie B. Staunton","doi":"10.1038/s41524-024-01445-w","DOIUrl":null,"url":null,"abstract":"<p>We study the phase behaviour of the Al<sub><i>x</i></sub>CrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of <i>x</i>, we predict either an L1<sub>2</sub> or D0<sub>22</sub> ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"260 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01445-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the phase behaviour of the AlxCrFeCoNi high-entropy alloy. Our approach is based on a perturbative analysis of the internal energy of the paramagnetic solid solution as evaluated within the Korringa-Kohn-Rostoker formulation of density functional theory, using the coherent potential approximation to average over disorder. Via application of a Landau-type linear response theory, we infer preferential chemical orderings directly. In addition, we recover a pairwise form of the alloy internal energy suitable for study via atomistic simulations, which in this work are performed using the nested sampling algorithm, which is well-suited for studying complex potential energy surfaces. When the underlying lattice is fcc, at low concentrations of Al, depending on the value of x, we predict either an L12 or D022 ordering emerging below approximately 1000 K. On the other hand, when the underlying lattice is bcc, consistent with experimental observations, we predict B2 ordering temperatures higher than the melting temperature of the alloy, confirming that this ordered phase forms directly from the melt. For both fcc and bcc systems, chemical orderings are dominated by Al moving to one sublattice, Ni and Co the other, while Cr and Fe remain comparatively disordered. On the bcc lattice, our atomistic modelling suggests eventual decomposition into B2 NiAl and Cr-rich phases. These results shed light on the fundamental physical origins of atomic ordering tendencies in these intriguing materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AlxCrFeCoNi高熵合金的结构、短程有序和相稳定性:来自微扰、dft分析的见解
研究了AlxCrFeCoNi高熵合金的相行为。我们的方法是基于顺磁性固溶体内能的微扰分析,在密度泛函理论的Korringa-Kohn-Rostoker公式中进行评估,使用相干势近似平均无序。通过应用朗道型线性响应理论,我们直接推断出优先的化学顺序。此外,我们通过原子模拟恢复了适合研究的合金内能的成对形式,在这项工作中使用嵌套采样算法进行,这非常适合研究复杂的势能表面。当底层晶格是fcc时,在低浓度的Al下,根据x的值,我们预测在大约1000 K以下出现L12或D022顺序。另一方面,当底层晶格为bcc时,与实验观察一致,我们预测B2有序温度高于合金的熔化温度,证实了这种有序相直接从熔体中形成。对于fcc和bcc体系,化学秩序主要是Al移动到一个亚晶格,Ni和Co移动到另一个亚晶格,而Cr和Fe保持相对无序。在bcc晶格上,我们的原子模型表明最终分解成B2 NiAl和富cr相。这些结果揭示了这些有趣材料中原子有序倾向的基本物理起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
ChIMES Carbon 2.0: A transferable machine-learned interatomic model harnessing multifidelity training data Automated identification of bulk structures, two-dimensional materials, and interfaces using symmetry-based clustering Accelerating charge estimation in molecular dynamics simulations using physics-informed neural networks: corrosion applications SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1