Rebecca K. Lindsey, Sorin Bastea, Sebastien Hamel, Yanjun Lyu, Nir Goldman, Vincenzo Lordi
{"title":"ChIMES Carbon 2.0: A transferable machine-learned interatomic model harnessing multifidelity training data","authors":"Rebecca K. Lindsey, Sorin Bastea, Sebastien Hamel, Yanjun Lyu, Nir Goldman, Vincenzo Lordi","doi":"10.1038/s41524-024-01497-y","DOIUrl":null,"url":null,"abstract":"<p>We present new parameterizations of the ChIMES physics informed machine-learned interatomic model for simulating carbon under conditions ranging from 300 K and 0 GPa to 10,000 K and 100 GPa, along with a new multi-fidelity active learning strategy. The resulting models show significant improvement in accuracy and temperature/pressure transferability relative to the original ChIMES carbon model developed in 2017 and can serve as a foundation for future transfer-learned ChIMES parameter sets. Applications to carbon melting point prediction, shockwave-driven conversion of graphite to diamond, and thermal conversion of nanodiamond to graphitic nanoonion are provided. Ultimately, we find the new models to be robust, accurate, and well-suited for modeling evolution in carbon systems under extreme conditions.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01497-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present new parameterizations of the ChIMES physics informed machine-learned interatomic model for simulating carbon under conditions ranging from 300 K and 0 GPa to 10,000 K and 100 GPa, along with a new multi-fidelity active learning strategy. The resulting models show significant improvement in accuracy and temperature/pressure transferability relative to the original ChIMES carbon model developed in 2017 and can serve as a foundation for future transfer-learned ChIMES parameter sets. Applications to carbon melting point prediction, shockwave-driven conversion of graphite to diamond, and thermal conversion of nanodiamond to graphitic nanoonion are provided. Ultimately, we find the new models to be robust, accurate, and well-suited for modeling evolution in carbon systems under extreme conditions.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.