{"title":"Revealing Microplastic Risks in Stratified Water Columns of the East China Sea Offshore","authors":"Jiawei Li, Yang Liu, Qiqi Chen, Yixuan Cai, Yixin Liao, Lili Liu, Yuanyuan Tang","doi":"10.1016/j.watres.2024.122900","DOIUrl":null,"url":null,"abstract":"Microplastics have been proven to impact a broad range of marine species significantly. This study investigated the vertical distribution characteristics of microplastics (MPs) to verify their potential toxicity, distribution patterns, and affecting probability on organisms offshore of the East China Sea (ECS), China. Significant variations in MP characteristics across stratified water layers were identified and corroborated through artificial neural network (ANN) analysis. By a combination of species sensitivity distribution (SSD), risk quotient (RQ) and joint pourability curves (JPC) method, this study gave the regional risk thresholds and current risk distributions. Based on SSD, the derived predicted no-effect concentration for the ecosystem was 52.0 items/L (95% confidence interval: 13.7-262.8 items/L), with the 5% species hazardous concentration at 103.6 items/L. The RQ assessment results indicated varying ecological risk levels across different water layers, with the highest risks transitioning from north to south and from surface to bottom layers. Most sites exhibited a moderate risk level, with the highest risks identified in surface water near the Yangtze River Estuary, China. Conversely, the JPC analysis suggested a minimal ecological risk across the study area, emphasizing variable ecological risk contingent on species presence. This study underscores the importance of examining surface and intermediate water layers for marine habitats and organisms, highlighting the necessity of prioritizing investigations into the distribution of MPs across different water layers in the ECS, particularly focusing on buoyant polyester fibers present in the upper water column and the layers beneath the offshore surface.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122900","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics have been proven to impact a broad range of marine species significantly. This study investigated the vertical distribution characteristics of microplastics (MPs) to verify their potential toxicity, distribution patterns, and affecting probability on organisms offshore of the East China Sea (ECS), China. Significant variations in MP characteristics across stratified water layers were identified and corroborated through artificial neural network (ANN) analysis. By a combination of species sensitivity distribution (SSD), risk quotient (RQ) and joint pourability curves (JPC) method, this study gave the regional risk thresholds and current risk distributions. Based on SSD, the derived predicted no-effect concentration for the ecosystem was 52.0 items/L (95% confidence interval: 13.7-262.8 items/L), with the 5% species hazardous concentration at 103.6 items/L. The RQ assessment results indicated varying ecological risk levels across different water layers, with the highest risks transitioning from north to south and from surface to bottom layers. Most sites exhibited a moderate risk level, with the highest risks identified in surface water near the Yangtze River Estuary, China. Conversely, the JPC analysis suggested a minimal ecological risk across the study area, emphasizing variable ecological risk contingent on species presence. This study underscores the importance of examining surface and intermediate water layers for marine habitats and organisms, highlighting the necessity of prioritizing investigations into the distribution of MPs across different water layers in the ECS, particularly focusing on buoyant polyester fibers present in the upper water column and the layers beneath the offshore surface.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.