Revealing Microplastic Risks in Stratified Water Columns of the East China Sea Offshore

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-12-01 DOI:10.1016/j.watres.2024.122900
Jiawei Li, Yang Liu, Qiqi Chen, Yixuan Cai, Yixin Liao, Lili Liu, Yuanyuan Tang
{"title":"Revealing Microplastic Risks in Stratified Water Columns of the East China Sea Offshore","authors":"Jiawei Li, Yang Liu, Qiqi Chen, Yixuan Cai, Yixin Liao, Lili Liu, Yuanyuan Tang","doi":"10.1016/j.watres.2024.122900","DOIUrl":null,"url":null,"abstract":"Microplastics have been proven to impact a broad range of marine species significantly. This study investigated the vertical distribution characteristics of microplastics (MPs) to verify their potential toxicity, distribution patterns, and affecting probability on organisms offshore of the East China Sea (ECS), China. Significant variations in MP characteristics across stratified water layers were identified and corroborated through artificial neural network (ANN) analysis. By a combination of species sensitivity distribution (SSD), risk quotient (RQ) and joint pourability curves (JPC) method, this study gave the regional risk thresholds and current risk distributions. Based on SSD, the derived predicted no-effect concentration for the ecosystem was 52.0 items/L (95% confidence interval: 13.7-262.8 items/L), with the 5% species hazardous concentration at 103.6 items/L. The RQ assessment results indicated varying ecological risk levels across different water layers, with the highest risks transitioning from north to south and from surface to bottom layers. Most sites exhibited a moderate risk level, with the highest risks identified in surface water near the Yangtze River Estuary, China. Conversely, the JPC analysis suggested a minimal ecological risk across the study area, emphasizing variable ecological risk contingent on species presence. This study underscores the importance of examining surface and intermediate water layers for marine habitats and organisms, highlighting the necessity of prioritizing investigations into the distribution of MPs across different water layers in the ECS, particularly focusing on buoyant polyester fibers present in the upper water column and the layers beneath the offshore surface.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122900","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Microplastics have been proven to impact a broad range of marine species significantly. This study investigated the vertical distribution characteristics of microplastics (MPs) to verify their potential toxicity, distribution patterns, and affecting probability on organisms offshore of the East China Sea (ECS), China. Significant variations in MP characteristics across stratified water layers were identified and corroborated through artificial neural network (ANN) analysis. By a combination of species sensitivity distribution (SSD), risk quotient (RQ) and joint pourability curves (JPC) method, this study gave the regional risk thresholds and current risk distributions. Based on SSD, the derived predicted no-effect concentration for the ecosystem was 52.0 items/L (95% confidence interval: 13.7-262.8 items/L), with the 5% species hazardous concentration at 103.6 items/L. The RQ assessment results indicated varying ecological risk levels across different water layers, with the highest risks transitioning from north to south and from surface to bottom layers. Most sites exhibited a moderate risk level, with the highest risks identified in surface water near the Yangtze River Estuary, China. Conversely, the JPC analysis suggested a minimal ecological risk across the study area, emphasizing variable ecological risk contingent on species presence. This study underscores the importance of examining surface and intermediate water layers for marine habitats and organisms, highlighting the necessity of prioritizing investigations into the distribution of MPs across different water layers in the ECS, particularly focusing on buoyant polyester fibers present in the upper water column and the layers beneath the offshore surface.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Corrigendum to "Microplastic and natural sediment in bed load saltation: Material does not dictate the fate" [Water Research 243 (2023) 120329]. Antibiotic resistance genes and virulence factors in the plastisphere in wastewater treatment plant effluent: Health risk quantification and driving mechanism interpretation Carbon transfer from land to fluvial networks in a typical karst river-reservoir system Revealing Microplastic Risks in Stratified Water Columns of the East China Sea Offshore Seasonal variations and hydrological management regulate nutrient transport in cascade damming: Insights from carbon and nitrogen isotopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1