Zaira Jocelyn Hernández Simón , José Alberto Luna López , Gabriel Omar Mendoza Conde , Álvaro David Hernández De La Luz , Xóchitl Aleyda Moran Martínez , José Juan Gervacio Arciniega , Mario Moreno Moreno , Javier Flores Méndez , Haydee Patricia Martínez Hernández , Eduardo Flores
{"title":"Electroluminescence in BiFeO3 and the role of defects","authors":"Zaira Jocelyn Hernández Simón , José Alberto Luna López , Gabriel Omar Mendoza Conde , Álvaro David Hernández De La Luz , Xóchitl Aleyda Moran Martínez , José Juan Gervacio Arciniega , Mario Moreno Moreno , Javier Flores Méndez , Haydee Patricia Martínez Hernández , Eduardo Flores","doi":"10.1016/j.mssp.2024.109168","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the existence of well-established reports on its photoluminescence spectrum, the phenomenon of electroluminescence in the BiFeO₃ (the multiferroic material par excellence) has not been previously reported. In this investigation, an electroluminescent effect is obtained in heterostructures fabricated with BiFeO<sub>3</sub> microstructures on a p-type silicon substrate and transparent ITO contacts. These results are noteworthy in that the heterostructures exhibited the electroluminescent effect under both positive and negative bias, with a broad spectrum and diverse conduction mechanisms, including: Schottky and hopping conduction. In the presence of negative bias, the emission process necessitates the application of reduced voltages (initiating at -6V with a maximum emission intensity observed at −20V) and currents of approximately 100 mA. Additionally, the emission exhibits notable stability. When the device is subjected to positive bias, emission occurs at the edge of the device at higher voltages (starting at 30V) and lower currents of approximately 10 mA. This paper discusses the differences between the photoluminescence and electroluminescence spectra, their contributions to the broad emission spectrum, and the reasons why the emission is obtained with positive or negative bias.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"188 ","pages":"Article 109168"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010643","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the existence of well-established reports on its photoluminescence spectrum, the phenomenon of electroluminescence in the BiFeO₃ (the multiferroic material par excellence) has not been previously reported. In this investigation, an electroluminescent effect is obtained in heterostructures fabricated with BiFeO3 microstructures on a p-type silicon substrate and transparent ITO contacts. These results are noteworthy in that the heterostructures exhibited the electroluminescent effect under both positive and negative bias, with a broad spectrum and diverse conduction mechanisms, including: Schottky and hopping conduction. In the presence of negative bias, the emission process necessitates the application of reduced voltages (initiating at -6V with a maximum emission intensity observed at −20V) and currents of approximately 100 mA. Additionally, the emission exhibits notable stability. When the device is subjected to positive bias, emission occurs at the edge of the device at higher voltages (starting at 30V) and lower currents of approximately 10 mA. This paper discusses the differences between the photoluminescence and electroluminescence spectra, their contributions to the broad emission spectrum, and the reasons why the emission is obtained with positive or negative bias.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.