Optimizing purslane cultivation through legume intercropping and crop rotation: a study on yield and rhizosphere bacterial communities

IF 3.9 2区 农林科学 Q1 AGRONOMY Plant and Soil Pub Date : 2024-12-02 DOI:10.1007/s11104-024-07061-3
Ángel Carrascosa-Robles, José Antonio Pascual, Jessica Cuartero, Ana de Santiago, Spyridon A. Petropoulos, María del Mar Alguacil
{"title":"Optimizing purslane cultivation through legume intercropping and crop rotation: a study on yield and rhizosphere bacterial communities","authors":"Ángel Carrascosa-Robles, José Antonio Pascual, Jessica Cuartero, Ana de Santiago, Spyridon A. Petropoulos, María del Mar Alguacil","doi":"10.1007/s11104-024-07061-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Mixed cropping systems such as intercropping and crop rotation have been proven to be sustainable agronomic tools that provide agro-ecological services and improve crop yield through soil physical, chemical and biological changes in the soil. In this study, we aimed to assess the impact of different mixed cropping systems on a crop well-adapted to high temperatures and low precipitation, like purslane (<i>Portulaca oleracea</i> L.) and to study the underlying microbial mechanisms involved.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>A field experiment in a semiarid region of southern Spain was conducted to study the short-term effects of crop rotation (R) and intercropping (I) with peas or cowpeas, as well as a combination of both (IR) on purslane yield and soil quality parameters such as microbial enzymatic activity, bacterial diversity, microbial composition and functionality.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>All the tested treatments increased purslane yield without significant differences among each other, but only the R and IR treatments affected the rhizospheric soil properties, through the increase of the enzymatic activities and the modification of the bacterial composition and functionality, and promoted organic matter degrading bacteria such as <i>Bacillaceae</i>, <i>Myxococcaceae</i>, and <i>Planococcaceae</i> and nitrogen-fixing bacteria, mainly <i>Rhizobiaceae</i> and <i>Beijerinckiaceae</i>.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This study demonstrates how sustainable cropping practices may improve the yield of a low maintenance crop like purslane under low-maintenance conditions by improving soil fertility in semiarid areas and also provides insights into the biological mechanisms responsible for the recorded effects.\n</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"261 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07061-3","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

Mixed cropping systems such as intercropping and crop rotation have been proven to be sustainable agronomic tools that provide agro-ecological services and improve crop yield through soil physical, chemical and biological changes in the soil. In this study, we aimed to assess the impact of different mixed cropping systems on a crop well-adapted to high temperatures and low precipitation, like purslane (Portulaca oleracea L.) and to study the underlying microbial mechanisms involved.

Methods

A field experiment in a semiarid region of southern Spain was conducted to study the short-term effects of crop rotation (R) and intercropping (I) with peas or cowpeas, as well as a combination of both (IR) on purslane yield and soil quality parameters such as microbial enzymatic activity, bacterial diversity, microbial composition and functionality.

Results

All the tested treatments increased purslane yield without significant differences among each other, but only the R and IR treatments affected the rhizospheric soil properties, through the increase of the enzymatic activities and the modification of the bacterial composition and functionality, and promoted organic matter degrading bacteria such as Bacillaceae, Myxococcaceae, and Planococcaceae and nitrogen-fixing bacteria, mainly Rhizobiaceae and Beijerinckiaceae.

Conclusion

This study demonstrates how sustainable cropping practices may improve the yield of a low maintenance crop like purslane under low-maintenance conditions by improving soil fertility in semiarid areas and also provides insights into the biological mechanisms responsible for the recorded effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
期刊最新文献
Modulation of the endophytic strain Kosakonia radicincitans UYSO10 proteome by sugarcane root exudates Regulation of crop rotation patterns on soil labile organic carbon, carbon-degrading microorganisms and their roles in organic carbon mineralization Effects of short-term exposure to elevated atmospheric CO2 on yield, nutritional profile, genetic regulatory pathways, and rhizosphere microbial community of common bean (Phaseolus vulgaris) Optimizing purslane cultivation through legume intercropping and crop rotation: a study on yield and rhizosphere bacterial communities Nitrogen addition affects tree trait expression by altering endophytic microbe diversity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1