Effects of short-term exposure to elevated atmospheric CO2 on yield, nutritional profile, genetic regulatory pathways, and rhizosphere microbial community of common bean (Phaseolus vulgaris)
Rafael D. C. Duarte, Marta Nunes da Silva, Gianuario Fortunato, Juan Quirós-Vargas, Onno Muller, Célia M. Manaia, Marta W. Vasconcelos
{"title":"Effects of short-term exposure to elevated atmospheric CO2 on yield, nutritional profile, genetic regulatory pathways, and rhizosphere microbial community of common bean (Phaseolus vulgaris)","authors":"Rafael D. C. Duarte, Marta Nunes da Silva, Gianuario Fortunato, Juan Quirós-Vargas, Onno Muller, Célia M. Manaia, Marta W. Vasconcelos","doi":"10.1007/s11104-024-07074-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aim</h3><p>Legumes are vital to agroecosystems and human nutrition, yet climate change is compromising their nutritional value. This study aims to assess how a one-month exposure to elevated CO<sub>2</sub> (eCO<sub>2</sub>) impacts biomass yield, mineral profile, gene expression, and the soil microbiome of common bean plants (<i>Phaseolus vulgaris</i> L.).</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p><i>Phaseolus vulgaris</i> L. was grown in field conditions under ambient CO<sub>2</sub> (control, aCO<sub>2</sub>, 400 ppm) or eCO<sub>2</sub> (600 pm) from the start of pod filling until plant maturity and analyzed for several morphophysiological and nutritional parameters.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Compared with aCO<sub>2</sub>, eCO<sub>2</sub> exposure significantly increased plant and grain biomass, with fluctuations in mineral accumulation. Notably, it decreased grain iron and zinc concentrations, two essential microelements related to food security, by 59% and 49%, respectively. Additionally, grain phenolic content decreased by up to 41%. Genes involved in mineral uptake (such as <i>FER1</i>, <i>ZIP1</i>, and <i>ZIP16</i>), plant response to stress (<i>TCR1</i>, <i>TCR2</i>, and <i>HLH54</i>) and symbiosis with soil microorganisms (<i>NRMAP7</i> and <i>RAM2</i>) seemed to regulate effects. Microbiome analysis supported these findings, with an increase in the relative abundance of Pseudomonadota by 10%, suggesting eCO<sub>2</sub>-induced alterations in microbial community structure.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This research demonstrates how eCO<sub>2</sub> impacts the nutritional quality of common beans regarding micronutrients and phenolic content, while also affecting soil microbiome composition. Highlighting the value of shorter term eCO<sub>2</sub> treatments, the findings provide early insights into immediate plant responses. This underscores the need for crop improvement strategies to address nutrient deficiencies that may arise under future eCO<sub>2</sub> conditions.\n</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"160 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07074-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Legumes are vital to agroecosystems and human nutrition, yet climate change is compromising their nutritional value. This study aims to assess how a one-month exposure to elevated CO2 (eCO2) impacts biomass yield, mineral profile, gene expression, and the soil microbiome of common bean plants (Phaseolus vulgaris L.).
Methods
Phaseolus vulgaris L. was grown in field conditions under ambient CO2 (control, aCO2, 400 ppm) or eCO2 (600 pm) from the start of pod filling until plant maturity and analyzed for several morphophysiological and nutritional parameters.
Results
Compared with aCO2, eCO2 exposure significantly increased plant and grain biomass, with fluctuations in mineral accumulation. Notably, it decreased grain iron and zinc concentrations, two essential microelements related to food security, by 59% and 49%, respectively. Additionally, grain phenolic content decreased by up to 41%. Genes involved in mineral uptake (such as FER1, ZIP1, and ZIP16), plant response to stress (TCR1, TCR2, and HLH54) and symbiosis with soil microorganisms (NRMAP7 and RAM2) seemed to regulate effects. Microbiome analysis supported these findings, with an increase in the relative abundance of Pseudomonadota by 10%, suggesting eCO2-induced alterations in microbial community structure.
Conclusions
This research demonstrates how eCO2 impacts the nutritional quality of common beans regarding micronutrients and phenolic content, while also affecting soil microbiome composition. Highlighting the value of shorter term eCO2 treatments, the findings provide early insights into immediate plant responses. This underscores the need for crop improvement strategies to address nutrient deficiencies that may arise under future eCO2 conditions.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.