Guoyong Yan, Xi Luo, Guancheng Liu, Binbin Huang, Honglin Wang, Xingyu Sun, Gang Fu, Lei Liu, Yajuan Xing, Qinggui Wang
{"title":"Nitrogen addition affects tree trait expression by altering endophytic microbe diversity","authors":"Guoyong Yan, Xi Luo, Guancheng Liu, Binbin Huang, Honglin Wang, Xingyu Sun, Gang Fu, Lei Liu, Yajuan Xing, Qinggui Wang","doi":"10.1007/s11104-024-07103-w","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Previous studies have demonstrated that plant-associated microbial diversity can confer fitness advantages to the plant host and influence ecosystem functions. The extent to which plant-associated microbial diversity modulates the response of plant fitness to environmental changes through its role in defining trait expression in the host plant remains, however, largely unknown.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, we aimed to address this gap by sampling plant traits and endophytic microbial communities at seven experimental sites simulating nitrogen deposition, a significant environmental change factor.</p><h3 data-test=\"abstract-sub-heading\">Key results</h3><p>We found a robust correlation between leaf and root traits, and the correlation remains unaffected by nitrogen addition, indicating a coordinated response of plants across both aboveground and belowground organs in the face of environmental changes. Furthermore, our evidence suggests that the adaptation of plant trait expression to nitrogen deposition is specifically modulated by the diversity of plant endophytic fungi and bacteria, rather than endophytic microbial community structure.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our results highlight the crucial role of endophytic microbe diversity in modulating plant host adaptation to environmental changes. These findings emphasize the importance of understanding the interactions between plants and their endophytic microbiome to better predict the impacts of environmental changes on ecosystem functions.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07103-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Previous studies have demonstrated that plant-associated microbial diversity can confer fitness advantages to the plant host and influence ecosystem functions. The extent to which plant-associated microbial diversity modulates the response of plant fitness to environmental changes through its role in defining trait expression in the host plant remains, however, largely unknown.
Methods
In this study, we aimed to address this gap by sampling plant traits and endophytic microbial communities at seven experimental sites simulating nitrogen deposition, a significant environmental change factor.
Key results
We found a robust correlation between leaf and root traits, and the correlation remains unaffected by nitrogen addition, indicating a coordinated response of plants across both aboveground and belowground organs in the face of environmental changes. Furthermore, our evidence suggests that the adaptation of plant trait expression to nitrogen deposition is specifically modulated by the diversity of plant endophytic fungi and bacteria, rather than endophytic microbial community structure.
Conclusions
Our results highlight the crucial role of endophytic microbe diversity in modulating plant host adaptation to environmental changes. These findings emphasize the importance of understanding the interactions between plants and their endophytic microbiome to better predict the impacts of environmental changes on ecosystem functions.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.