Self-assembly driven regulation of 3D brush-/flower-like silk nanostructures with robust structural effects on composites construction

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-12-02 DOI:10.1016/j.ijbiomac.2024.138245
Yanlei Hu , Juan Li , Jiamin Zhang , Wenwen Zhang , Yimin Fan
{"title":"Self-assembly driven regulation of 3D brush-/flower-like silk nanostructures with robust structural effects on composites construction","authors":"Yanlei Hu ,&nbsp;Juan Li ,&nbsp;Jiamin Zhang ,&nbsp;Wenwen Zhang ,&nbsp;Yimin Fan","doi":"10.1016/j.ijbiomac.2024.138245","DOIUrl":null,"url":null,"abstract":"<div><div>Natural designs provide abundant inspirations for constructing structure regulated, performance enhanced and function enriched materials. An impressive 3D brush-like silk nanostructure (SNB) was designed and regulated via template-guided self-assembly approach in our previous work. While fundamental issues on template-guided self-assembly process to construct SNBs and followed by regulating flower-like silk nanostructure (SNF) mineralization have not been studied in detail yet. Robust structural effects and additional functionalities on composites construction remain hazy. Herein, current works concentrate on issues related to assembly dynamics, structural features, characteristic parameters and assembly simulation during template-guided self-assembly process. Morphologies change, transmittance, pH value, zeta-potential, ThT-induced fluorescence emission and MD simulation are measured to monitor SNBs formation, proving it's a nucleus reliance and conformation transition process. Structural superiorities of SNBs and SNFs are proved by constructing composited materials (such as membranes, hydrogels or aerogels) with cellulose or chitin derivatives, and enhanced mechanical performance, excellent viscoelastic behavior or highly porous network can be found therewith. In addition, additional functionalities such as Ag nanoparticle reducing property and anti-bacteria application are evaluated as well. This work is expected to provide guidelines and inspirations for tailoring versatile structures in controlled manners and exploiting functional features to expand silk utilization scopes.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"285 ","pages":"Article 138245"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024090561","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural designs provide abundant inspirations for constructing structure regulated, performance enhanced and function enriched materials. An impressive 3D brush-like silk nanostructure (SNB) was designed and regulated via template-guided self-assembly approach in our previous work. While fundamental issues on template-guided self-assembly process to construct SNBs and followed by regulating flower-like silk nanostructure (SNF) mineralization have not been studied in detail yet. Robust structural effects and additional functionalities on composites construction remain hazy. Herein, current works concentrate on issues related to assembly dynamics, structural features, characteristic parameters and assembly simulation during template-guided self-assembly process. Morphologies change, transmittance, pH value, zeta-potential, ThT-induced fluorescence emission and MD simulation are measured to monitor SNBs formation, proving it's a nucleus reliance and conformation transition process. Structural superiorities of SNBs and SNFs are proved by constructing composited materials (such as membranes, hydrogels or aerogels) with cellulose or chitin derivatives, and enhanced mechanical performance, excellent viscoelastic behavior or highly porous network can be found therewith. In addition, additional functionalities such as Ag nanoparticle reducing property and anti-bacteria application are evaluated as well. This work is expected to provide guidelines and inspirations for tailoring versatile structures in controlled manners and exploiting functional features to expand silk utilization scopes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Self-assembly driven regulation of 3D brush-/flower-like silk nanostructures with robust structural effects on composites construction YTHDF3 suppresses declines in corneal epithelial wound healing through upregulating the Wnt/β-catenin signaling pathway and THBS2 expression in diabetic corneas Two-step computational redesign of Bacillus subtilis cellulase and β-glucanase for enhanced thermostability and activity Tuning antibacterial efficacy against Pseudomonas aeruginosa by using green AgNPs in chitosan thin films as a plastic alternative Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1