Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-12-02 DOI:10.1016/j.ijbiomac.2024.138278
Jianhua Zeng , Junzhe Zou , Huaxi Yi , Jian He , Jinlong Zhao , Shiye Zhu , Baolei Li , Olayemi Eyituoyo Dudu , Lanwei Zhang , Pimin Gong
{"title":"Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein","authors":"Jianhua Zeng ,&nbsp;Junzhe Zou ,&nbsp;Huaxi Yi ,&nbsp;Jian He ,&nbsp;Jinlong Zhao ,&nbsp;Shiye Zhu ,&nbsp;Baolei Li ,&nbsp;Olayemi Eyituoyo Dudu ,&nbsp;Lanwei Zhang ,&nbsp;Pimin Gong","doi":"10.1016/j.ijbiomac.2024.138278","DOIUrl":null,"url":null,"abstract":"<div><div>αs1-Casein (αs1-CN) is the major allergen in cow milk; however, the understanding of its conformational epitopes remains limited due to the absence of a well-defined three-dimensional structure, which has impeded efforts to effectively reduce its antigenicity. This study employed molecular dynamics simulations (MD), ELISA, cell assays and peptidomes analysis to investigate the critical conformational epitopes of αs1-Casein. MD and immunological analyses identified a dominant conformational epitope encompassing the regions S55-E75 &amp; Y154-T174 &amp; F179-W199, which exhibited strong binding affinity to IgE and triggered the releasing of β-hexosaminidase, histamine and IL-6 in KU812 cells, thereby inducing allergic responses. Notably, the segments Y154-T174 and F179-W199 were particularly impactful. Furthermore, the presence of helical structures within the epitopes enhanced their binding to IgE to a certain extent. Peptidomes analysis further revealed that papain efficiently disrupted the key epitope (Y154-T174) by selectively cleaving the hotspot amino acid residues (Y154 and Y165), thereby significantly reducing the antigenicity of αs1-CN, decreasing IgE and IgG binding to 7.28 % and 10.39 %, respectively. These findings enhance the understanding of αs1-CN's antigenic epitopes and provides a theoretical and technical foundation for the targeted reduction of its antigenicity.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"285 ","pages":"Article 138278"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024090895","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

αs1-Casein (αs1-CN) is the major allergen in cow milk; however, the understanding of its conformational epitopes remains limited due to the absence of a well-defined three-dimensional structure, which has impeded efforts to effectively reduce its antigenicity. This study employed molecular dynamics simulations (MD), ELISA, cell assays and peptidomes analysis to investigate the critical conformational epitopes of αs1-Casein. MD and immunological analyses identified a dominant conformational epitope encompassing the regions S55-E75 & Y154-T174 & F179-W199, which exhibited strong binding affinity to IgE and triggered the releasing of β-hexosaminidase, histamine and IL-6 in KU812 cells, thereby inducing allergic responses. Notably, the segments Y154-T174 and F179-W199 were particularly impactful. Furthermore, the presence of helical structures within the epitopes enhanced their binding to IgE to a certain extent. Peptidomes analysis further revealed that papain efficiently disrupted the key epitope (Y154-T174) by selectively cleaving the hotspot amino acid residues (Y154 and Y165), thereby significantly reducing the antigenicity of αs1-CN, decreasing IgE and IgG binding to 7.28 % and 10.39 %, respectively. These findings enhance the understanding of αs1-CN's antigenic epitopes and provides a theoretical and technical foundation for the targeted reduction of its antigenicity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Self-assembly driven regulation of 3D brush-/flower-like silk nanostructures with robust structural effects on composites construction YTHDF3 suppresses declines in corneal epithelial wound healing through upregulating the Wnt/β-catenin signaling pathway and THBS2 expression in diabetic corneas Two-step computational redesign of Bacillus subtilis cellulase and β-glucanase for enhanced thermostability and activity Tuning antibacterial efficacy against Pseudomonas aeruginosa by using green AgNPs in chitosan thin films as a plastic alternative Localization and antigenicity reduction of immunodominant conformational IgE epitopes on αs1-casein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1