Regional Biomes outperform broader spatial units in capturing biodiversity responses to land-use change

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-12-04 DOI:10.1111/ecog.07318
Peggy A. Bevan, Guilherme Braga Ferreira, Daniel J. Ingram, Marcus Rowcliffe, Lucy Young, Robin Freeman, Kate E. Jones
{"title":"Regional Biomes outperform broader spatial units in capturing biodiversity responses to land-use change","authors":"Peggy A. Bevan, Guilherme Braga Ferreira, Daniel J. Ingram, Marcus Rowcliffe, Lucy Young, Robin Freeman, Kate E. Jones","doi":"10.1111/ecog.07318","DOIUrl":null,"url":null,"abstract":"Biogeographic context, such as biome type, has a critical influence on ecological resilience, as climatic and environmental conditions impact how communities respond to anthropogenic threats. For example, land-use change causes a greater loss of biodiversity in tropical biomes compared to temperate biomes. Furthermore, the nature of threats impacting ecosystems varies geographically. Therefore, monitoring the state of biodiversity at a high spatial resolution is crucial to capture variation in threat–responses caused by biogeographical context. However such fine-scale ecological data collection could be prohibitively resource intensive. In this study, we aim to find the spatial scale that could best capture variation in community-level threat responses whilst keeping data collection requirements feasible. Using a database of biodiversity records with extensive global coverage, we modelled species richness and total abundance (the responses) across land-use types (reflecting threats), considering three different spatial scales: biomes, biogeographical realms, and regional biomes (the interaction between realm and biome). We then modelled data from three highly sampled biomes to ask how responses to threat differ between regional biomes and taxonomic group. We found strong support for regional biomes in explaining variation in species richness and total abundance compared to biomes or realms alone. Our biome case studies demonstrate that there is variation in magnitude and direction of threat responses across both regional biomes and taxonomic group, although the interpretation is limited by sampling bias in the literature. All groups in tropical forest showed a consistently negative response, whilst many taxon-regional biome groups showed no clear response to threat in temperate forest and tropical grassland. Our results provide the first empirical evidence that the taxon-regional biome unit has potential as a reasonable spatial unit for monitoring how ecological communities respond to threats and designing effective conservation interventions to bend the curve on biodiversity loss.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"214 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07318","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Biogeographic context, such as biome type, has a critical influence on ecological resilience, as climatic and environmental conditions impact how communities respond to anthropogenic threats. For example, land-use change causes a greater loss of biodiversity in tropical biomes compared to temperate biomes. Furthermore, the nature of threats impacting ecosystems varies geographically. Therefore, monitoring the state of biodiversity at a high spatial resolution is crucial to capture variation in threat–responses caused by biogeographical context. However such fine-scale ecological data collection could be prohibitively resource intensive. In this study, we aim to find the spatial scale that could best capture variation in community-level threat responses whilst keeping data collection requirements feasible. Using a database of biodiversity records with extensive global coverage, we modelled species richness and total abundance (the responses) across land-use types (reflecting threats), considering three different spatial scales: biomes, biogeographical realms, and regional biomes (the interaction between realm and biome). We then modelled data from three highly sampled biomes to ask how responses to threat differ between regional biomes and taxonomic group. We found strong support for regional biomes in explaining variation in species richness and total abundance compared to biomes or realms alone. Our biome case studies demonstrate that there is variation in magnitude and direction of threat responses across both regional biomes and taxonomic group, although the interpretation is limited by sampling bias in the literature. All groups in tropical forest showed a consistently negative response, whilst many taxon-regional biome groups showed no clear response to threat in temperate forest and tropical grassland. Our results provide the first empirical evidence that the taxon-regional biome unit has potential as a reasonable spatial unit for monitoring how ecological communities respond to threats and designing effective conservation interventions to bend the curve on biodiversity loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
区域生物群落在捕捉生物多样性对土地利用变化的响应方面优于更广泛的空间单位
生物地理背景,如生物群落类型,对生态复原力具有关键影响,因为气候和环境条件影响社区如何应对人为威胁。例如,与温带生物群落相比,土地利用变化导致热带生物群落的生物多样性损失更大。此外,影响生态系统的威胁的性质在地理上也各不相同。因此,以高空间分辨率监测生物多样性状况对于捕捉由生物地理环境引起的威胁响应变化至关重要。然而,这种精细的生态数据收集可能需要大量的资源。在这项研究中,我们的目标是找到最能捕捉社区层面威胁响应变化的空间尺度,同时保持数据收集要求的可行性。利用具有广泛全球覆盖的生物多样性记录数据库,我们模拟了不同土地利用类型(反映威胁)的物种丰富度和总丰度(响应),考虑了三种不同的空间尺度:生物群落、生物地理领域和区域生物群落(领域与生物群落之间的相互作用)。然后,我们对三个高度采样的生物群落的数据进行建模,以了解区域生物群落和分类群体对威胁的反应如何不同。我们发现,与单独的生物群系或领域相比,区域生物群系在解释物种丰富度和总丰度变化方面有强有力的支持。我们的生物群落案例研究表明,在不同的区域生物群落和分类群体中,威胁响应的大小和方向都存在差异,尽管这种解释受到文献中抽样偏差的限制。热带森林中所有类群对威胁均表现出一致的负响应,而温带森林和热带草原中许多分类-区域生物群系对威胁没有明显的响应。本文的研究结果首次提供了经验证据,表明分类-区域生物群系单元有潜力作为一个合理的空间单元来监测生态群落如何应对威胁,并设计有效的保护干预措施来扭转生物多样性丧失的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Drivers of amphibian species richness in European ponds Testing the abundant centre hypothesis in a seabird: higher energy expenditure at the wintering range centre does not reduce reproductive success Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes Resource redistribution mediated by hydrological connectivity modulates vegetation response to aridification in drylands Integrating food webs in species distribution models can improve ecological niche estimation and predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1