Muhammad Asif Javaid, Muhammad Waqar, Muhammad Adnan Ayub, Yousef M Alanazi, Muhammad Shoaib, Zaighum Tanveer, Saliha Ahmad, De-Qiang Li, Khadija Ummer, Muhammad Tahir Hussain
{"title":"Use of carboxymethyl cellulose in polyurethane synthesis for thermal applications.","authors":"Muhammad Asif Javaid, Muhammad Waqar, Muhammad Adnan Ayub, Yousef M Alanazi, Muhammad Shoaib, Zaighum Tanveer, Saliha Ahmad, De-Qiang Li, Khadija Ummer, Muhammad Tahir Hussain","doi":"10.1016/j.ijbiomac.2024.138298","DOIUrl":null,"url":null,"abstract":"<p><p>This research utilizes carboxymethyl cellulose (CMC) as a renewable feedstock in polyurethane synthesis, offering improved thermal stability and potential for biomedical applications. In this study, a series of CMC-based polyurethanes was synthesized by using a step-growth polymerization reaction. The initial step involved the reaction of isophorone diisocyanate (IPDI) with hydroxy-terminated polybutadiene (HTPB) to prepare an isocyanate (-NCO) terminated prepolymer. Then, this prepolymer was extended using a combination of chain extenders, namely 1,4-butanediol and CMC, to produce the final polyurethanes. Five different samples of polyurethanes were prepared using varying mole ratios of chain extenders (CMC and 1,4-butanediol). The developed polyurethanes were characterized through Fourier transform infrared (FTIR) spectroscopy and proton nuclear resonance (<sup>1</sup>H NMR). The thermal degradation behaviour of the CMC-based polyurethanes was observed by using thermogravimetric analysis (TGA), while the molecular weight of the samples was determined by using Gel permeation chromatography (GPC). The results showed that polyurethanes prepared using CMC as a natural chain extender, in place of petrochemical-derived 1,4-butanediol, exhibited improved thermal stability and higher molecular weights. Notably, MWF-5 exhibited the highest tensile strength and breaking strain among all the samples, while MWF-1 showed the lowest values.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138298"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138298","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This research utilizes carboxymethyl cellulose (CMC) as a renewable feedstock in polyurethane synthesis, offering improved thermal stability and potential for biomedical applications. In this study, a series of CMC-based polyurethanes was synthesized by using a step-growth polymerization reaction. The initial step involved the reaction of isophorone diisocyanate (IPDI) with hydroxy-terminated polybutadiene (HTPB) to prepare an isocyanate (-NCO) terminated prepolymer. Then, this prepolymer was extended using a combination of chain extenders, namely 1,4-butanediol and CMC, to produce the final polyurethanes. Five different samples of polyurethanes were prepared using varying mole ratios of chain extenders (CMC and 1,4-butanediol). The developed polyurethanes were characterized through Fourier transform infrared (FTIR) spectroscopy and proton nuclear resonance (1H NMR). The thermal degradation behaviour of the CMC-based polyurethanes was observed by using thermogravimetric analysis (TGA), while the molecular weight of the samples was determined by using Gel permeation chromatography (GPC). The results showed that polyurethanes prepared using CMC as a natural chain extender, in place of petrochemical-derived 1,4-butanediol, exhibited improved thermal stability and higher molecular weights. Notably, MWF-5 exhibited the highest tensile strength and breaking strain among all the samples, while MWF-1 showed the lowest values.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.