Wenbiao Nie, Wenzhen Zhong, Lin Qian, Huiyun Zhong, Yusen Hou, Haiting Xu, Shanshan Qi, Linxin Dai, Xiaoqin Han, Xinyue Yang, Runchun Xu, Yao He, Dasheng Lin, Fei Gao
{"title":"Oral chitosan-cyclodextrin \"shell-core\" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment.","authors":"Wenbiao Nie, Wenzhen Zhong, Lin Qian, Huiyun Zhong, Yusen Hou, Haiting Xu, Shanshan Qi, Linxin Dai, Xiaoqin Han, Xinyue Yang, Runchun Xu, Yao He, Dasheng Lin, Fei Gao","doi":"10.1016/j.ijbiomac.2024.138493","DOIUrl":null,"url":null,"abstract":"<p><p>The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138493"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138493","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The food-derived ingredients Rhein (RH) and chlorogenic acid (CGA) have DEMONSTRATED a potential synergistic effect in the treatment of ulcerative colitis (UC) through their anti-inflammatory and antioxidant properties. However, the oral co-delivery of RH and CGA faces challenges such as differences in hydrophilicity and hydrophobicity, gastrointestinal instability, and inadequate colonic targeting. To address these issues, shell-core nanoparticles were developed for the co-encapsulation of RH and CGA (CP@CGA-FA/TA@RH NPs). These nanoparticles utilize cyclodextrin-based polymers and folate-amantadine polymers to form a supramolecular core that targets macrophages for anti-inflammatory action with RH, while chitosan cross-link to CGA in the outer shell provides microenvironment-sensitive antioxidant release. The results indicate that CP@CGA-FA/TA@RH NPs could effectively inhibit the classical TLR4/MyD88/NF-κB-mediated anti-inflammatory pathway and activate the Nrf2/HO-1-mediated antioxidant pathway, offering a novel approach to UC treatment. Q-value analysis confirms the substantial co-medication effect between RH and CGA. This study is the first to develop a nano-system combining two food-derived ingredients for the integrated treatment of UC.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.