Semi-rational engineering of leucine dehydrogenase for enhanced L-tert-leucine production.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2025-02-01 Epub Date: 2024-12-05 DOI:10.1016/j.ijbiomac.2024.138469
Yanqiu Liang, Qiong Wang, Jiapeng Lu, Yi Wang, Quanfeng Liang, Wei Luo
{"title":"Semi-rational engineering of leucine dehydrogenase for enhanced L-tert-leucine production.","authors":"Yanqiu Liang, Qiong Wang, Jiapeng Lu, Yi Wang, Quanfeng Liang, Wei Luo","doi":"10.1016/j.ijbiomac.2024.138469","DOIUrl":null,"url":null,"abstract":"<p><p>Leucine dehydrogenase (LeuDH) is a promising enzyme for the industrial production of L-tert-leucine (L-Tle), but its catalytic activity toward trimethylpyruvate (TMP) requires enhancement. In this study, we employed a semi-rational design approach involving homology modeling of LeuDH from Exiguobacterium sibiricum (EsiLeuDH) and molecular docking with TMP to predict potential mutation sites. These sites were tested using an alanine scanning strategy to assess their impact on enzymatic activity, followed by site-saturation mutagenesis and iterative saturation mutagenesis. The resulting mutant, EsiLeuDH-M3, exhibited a remarkable 306 % increase in specific enzymatic activity (104.69 U·mg<sup>-1</sup>), compared to the wild-type EsiLeuDH (WT). Molecular docking indicated that EsiLeuDH-M3 had an increased number of hydrogen bonds, improved stability, and an enlarged substrate-binding pocket. Moreover, molecular dynamics simulations suggested that EsiLeuDH-M3 possessed a more stable conformation but a more flexible pocket, allowing TMP to access the catalytic center more easily. Experiments examining the effects of different substrate concentrations on TMP bioconversion catalyzed by WT and EsiLeuDH-M3 indicated that EsiLeuDH-M3 tolerated higher TMP concentrations than the WT enzyme. Finally, L-Tle was produced using EsiLeuDH-M3 coupled with an NADH regeneration system, achieving a high conversion rate (91 %) of TMP at a substrate concentration of 0.7 M, which is expected to reduce production costs in the industrial application of L-Tle.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138469"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leucine dehydrogenase (LeuDH) is a promising enzyme for the industrial production of L-tert-leucine (L-Tle), but its catalytic activity toward trimethylpyruvate (TMP) requires enhancement. In this study, we employed a semi-rational design approach involving homology modeling of LeuDH from Exiguobacterium sibiricum (EsiLeuDH) and molecular docking with TMP to predict potential mutation sites. These sites were tested using an alanine scanning strategy to assess their impact on enzymatic activity, followed by site-saturation mutagenesis and iterative saturation mutagenesis. The resulting mutant, EsiLeuDH-M3, exhibited a remarkable 306 % increase in specific enzymatic activity (104.69 U·mg-1), compared to the wild-type EsiLeuDH (WT). Molecular docking indicated that EsiLeuDH-M3 had an increased number of hydrogen bonds, improved stability, and an enlarged substrate-binding pocket. Moreover, molecular dynamics simulations suggested that EsiLeuDH-M3 possessed a more stable conformation but a more flexible pocket, allowing TMP to access the catalytic center more easily. Experiments examining the effects of different substrate concentrations on TMP bioconversion catalyzed by WT and EsiLeuDH-M3 indicated that EsiLeuDH-M3 tolerated higher TMP concentrations than the WT enzyme. Finally, L-Tle was produced using EsiLeuDH-M3 coupled with an NADH regeneration system, achieving a high conversion rate (91 %) of TMP at a substrate concentration of 0.7 M, which is expected to reduce production costs in the industrial application of L-Tle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高l -叔亮氨酸产量的半合理亮氨酸脱氢酶工程研究。
亮氨酸脱氢酶(Leucine dehydrogenase, LeuDH)是工业生产l -叔亮氨酸(L-Tle)的一种很有前途的酶,但其对三甲基丙酮酸(trimethylpyruvate, TMP)的催化活性有待提高。在这项研究中,我们采用了半理性设计方法,包括建立sibiricum Exiguobacterium LeuDH (EsiLeuDH)的同源性模型,并与TMP进行分子对接,以预测潜在的突变位点。使用丙氨酸扫描策略对这些位点进行测试,以评估它们对酶活性的影响,然后进行位点饱和诱变和迭代饱和诱变。由此产生的突变体EsiLeuDH- m3比野生型EsiLeuDH (WT)的酶活性显著提高了306 %(104.69 U·mg-1)。分子对接表明,EsiLeuDH-M3的氢键数量增加,稳定性提高,底物结合袋增大。此外,分子动力学模拟表明,EsiLeuDH-M3具有更稳定的构象和更灵活的口袋,使TMP更容易进入催化中心。实验检测了不同底物浓度对WT和EsiLeuDH-M3催化TMP生物转化的影响,结果表明,EsiLeuDH-M3比WT酶耐受更高的TMP浓度。最后,利用EsiLeuDH-M3和NADH再生系统制备L-Tle,在底物浓度为0.7 M时,TMP的转化率高达91 %,有望降低L-Tle工业应用的生产成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Use of carboxymethyl cellulose in polyurethane synthesis for thermal applications. Comprehensive transcriptomic analysis revealed the mechanism of ZjLAR and ZjANR promoting proanthocyanidin biosynthesis in jujube fruit. Adsorption mechanism of key off-odor compounds of oyster peptide by V-type starch in the solid-phase environment. Semi-rational engineering of leucine dehydrogenase for enhanced L-tert-leucine production. Oral chitosan-cyclodextrin "shell-core" nanoparticles co-loaded Rhein and chlorogenic acid for ulcerative colitis treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1