Complex waste stream valorization through combined enzymatic hydrolysis and catabolic assimilation by Pseudomonas putida.

IF 14.3 1区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Trends in biotechnology Pub Date : 2024-12-04 DOI:10.1016/j.tibtech.2024.10.020
Micaela Chacón, Guadalupe Alvarez-Gonzalez, Piya Gosalvitr, Adokiye Berepiki, Karl Fisher, Rosa Cuéllar-Franca, Neil Dixon
{"title":"Complex waste stream valorization through combined enzymatic hydrolysis and catabolic assimilation by Pseudomonas putida.","authors":"Micaela Chacón, Guadalupe Alvarez-Gonzalez, Piya Gosalvitr, Adokiye Berepiki, Karl Fisher, Rosa Cuéllar-Franca, Neil Dixon","doi":"10.1016/j.tibtech.2024.10.020","DOIUrl":null,"url":null,"abstract":"<p><p>Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts. Design of experiments was employed to explore the combinatorial space of nine waste-derived monomers, displaying robust catabolic efficiency regardless of substrate composition. Prospective Life-Cycle Assessment (LCA) and Life-Cycle Costing (LCC) illustrated the climate change (CC) and economic advantages of biomanufacturing compared with conventional waste treatment options, demonstrating a 41-62% potential reduction in CC impact. This work demonstrates the potential for expanding treatment strategies for mixed waste to include engineered microbes.</p>","PeriodicalId":23324,"journal":{"name":"Trends in biotechnology","volume":" ","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tibtech.2024.10.020","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biogenic waste-derived feedstocks for production of fuels, chemicals, and materials offer great potential supporting the transition to net-zero and greater circularity. However, such feedstocks are heterogeneous and subject to geographical and seasonal variability. Here, we show that, through careful strain selection and metabolic engineering, Pseudomonas putida can be employed to permit efficient co-utilization of highly heterogeneous substrate compositions derived from hydrolyzed mixed municipal-like waste fractions (food, plastic, organic, paper, cardboard, and textiles) for growth and synthesis of exemplar bioproducts. Design of experiments was employed to explore the combinatorial space of nine waste-derived monomers, displaying robust catabolic efficiency regardless of substrate composition. Prospective Life-Cycle Assessment (LCA) and Life-Cycle Costing (LCC) illustrated the climate change (CC) and economic advantages of biomanufacturing compared with conventional waste treatment options, demonstrating a 41-62% potential reduction in CC impact. This work demonstrates the potential for expanding treatment strategies for mixed waste to include engineered microbes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腐臭假单胞菌联合酶解和分解代谢同化的复杂废物流增值。
用于生产燃料、化学品和材料的生物废物来源的原料为支持向净零排放和更大的循环过渡提供了巨大的潜力。然而,这些原料是异质的,受地理和季节变化的影响。在这里,我们表明,通过仔细的菌株选择和代谢工程,恶臭假单胞菌可以有效地共同利用来自水解混合城市废物组分(食物,塑料,有机,纸,纸板和纺织品)的高度异质底物组成,以生长和合成范例生物制品。实验设计用于探索九种废物衍生单体的组合空间,无论底物组成如何,都显示出强大的分解代谢效率。前瞻性生命周期评估(LCA)和生命周期成本计算(LCC)表明,与传统的废物处理方案相比,生物制造的气候变化(CC)和经济优势表明,生物制造对CC的影响可能减少41-62%。这项工作证明了扩大混合废物处理策略的潜力,包括工程微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Trends in biotechnology
Trends in biotechnology 工程技术-生物工程与应用微生物
CiteScore
28.60
自引率
1.20%
发文量
198
审稿时长
1 months
期刊介绍: Trends in Biotechnology publishes reviews and perspectives on the applied biological sciences, focusing on useful science applied to, derived from, or inspired by living systems. The major themes that TIBTECH is interested in include: Bioprocessing (biochemical engineering, applied enzymology, industrial biotechnology, biofuels, metabolic engineering) Omics (genome editing, single-cell technologies, bioinformatics, synthetic biology) Materials and devices (bionanotechnology, biomaterials, diagnostics/imaging/detection, soft robotics, biosensors/bioelectronics) Therapeutics (biofabrication, stem cells, tissue engineering and regenerative medicine, antibodies and other protein drugs, drug delivery) Agroenvironment (environmental engineering, bioremediation, genetically modified crops, sustainable development).
期刊最新文献
Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Automated adjustment of metabolic niches enables the control of natural and engineered microbial co-cultures. Distillation for in situ recovery of volatile fermentation products. Understanding bacterial ecology to combat antibiotic resistance dissemination. High-throughput screening strategies for plastic-depolymerizing enzymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1