Integrating fine-scale behaviour and microclimate data into biophysical models highlights the risk of lethal hyperthermia and dehydration

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2024-12-16 DOI:10.1111/ecog.07432
Shannon R. Conradie, Blair O. Wolf, Susan J. Cunningham, Amanda Bourne, Tanja van de Ven, Amanda R. Ridley, Andrew E. McKechnie
{"title":"Integrating fine-scale behaviour and microclimate data into biophysical models highlights the risk of lethal hyperthermia and dehydration","authors":"Shannon R. Conradie, Blair O. Wolf, Susan J. Cunningham, Amanda Bourne, Tanja van de Ven, Amanda R. Ridley, Andrew E. McKechnie","doi":"10.1111/ecog.07432","DOIUrl":null,"url":null,"abstract":"Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species-specific functional traits and published behavioural data on hotter (maximum daily temperature, <i>T</i><sub>max</sub> &gt; 35°C) and cooler days (<i>T</i><sub>max</sub> &lt; 35°C). Incorporating continuous time-activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow-billed hornbills <i>Tockus leucomelas</i>, southern pied babblers <i>Turdoides bicolor</i> and southern fiscals <i>Lanius collaris</i> are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year<sup>−1</sup>, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year<sup>−1</sup>) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year<sup>−1</sup>, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time-activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"14 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07432","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change threatens biodiversity by compromising the ability to balance energy and water, influencing animal behaviour, species interactions, distribution and ultimately survival. Predicting climate change effects on thermal physiology is complicated by interspecific variation in thermal tolerance limits, thermoregulatory behaviour and heterogenous thermal landscapes. We develop an approach for assessing thermal vulnerability for endotherms by incorporating behaviour and microsite data into a biophysical model. We parameterised the model using species-specific functional traits and published behavioural data on hotter (maximum daily temperature, Tmax > 35°C) and cooler days (Tmax < 35°C). Incorporating continuous time-activity focal observations of behaviour into the biophysical approach reveals that the three insectivorous birds modelled here are at greater risk of lethal hyperthermia than dehydration under climate change, contrary to previous thermal risk assessments. Southern yellow-billed hornbills Tockus leucomelas, southern pied babblers Turdoides bicolor and southern fiscals Lanius collaris are predicted to experience a risk of lethal hyperthermia on ~ 24, 65 and 40 more days year−1, respectively, in 2100 relative to current conditions. Maintaining water balance may also become increasingly challenging. Babblers are predicted to experience a 57% increase (to ~186 days year−1) in exposure to conditions associated with net negative 24 h water balance in the absence of drinking, with ~ 86 of those days associated with a risk of lethal dehydration. Hornbills and fiscals are predicted to experience ~ 84 and 100 days year−1, respectively, associated with net negative 24 h water balance, with ≤ 20 of those days associated with a risk of lethal dehydration. Integrating continuous time-activity focal data is vital to understand and predict thermal challenges animals likely experience. We provide a comprehensive thermal risk assessment and emphasise the importance of thermoregulatory and drinking behaviour for endotherm persistence in coming decades.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候变化会损害能量和水分平衡的能力,影响动物行为、物种互动、分布和最终生存,从而威胁生物多样性。由于热耐受极限、体温调节行为和异质热景观的种间差异,预测气候变化对热生理学的影响变得非常复杂。我们开发了一种方法,通过将行为和微站点数据纳入生物物理模型来评估内温动物的热脆弱性。我们利用物种特有的功能特征和已公布的较热天(日最高温度为 35°C)和较冷天(日最高温度为 35°C)的行为数据对模型进行了参数化。将连续的时间活动焦点行为观测纳入生物物理方法后发现,与以往的热风险评估结果相反,本文所模拟的三种食虫鸟类在气候变化下发生致命性高热的风险大于脱水的风险。预计到2100年,南方黄嘴犀鸟(Tockus leucomelas)、南方斑狒狒(Turdoides bicolor)和南方长尾杓鹬(Lanius collaris)的致命性高热风险将分别比目前多24天、65天和40天。维持水平衡也可能变得越来越具有挑战性。据预测,在不饮水的情况下,狒狒暴露于与 24 小时净负水平衡相关的条件下的天数将增加 57%(增至每年约 186 天),其中约 86 天有致命脱水的风险。据预测,犀鸟和菲斯卡每年分别有84天和100天处于24小时净负水平衡状态,其中≤20天有致命脱水风险。整合连续的时间活动焦点数据对于了解和预测动物可能经历的热挑战至关重要。我们提供了一个全面的热风险评估,并强调了体温调节和饮水行为在未来几十年内对于内温持续性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Estimating a physiological threshold to oxygen and temperature from marine monitoring data reveals challenges and opportunities for forecasting distribution shifts Model‐based impact analysis of climate change and land‐use intensification on trophic networks Integrating fine-scale behaviour and microclimate data into biophysical models highlights the risk of lethal hyperthermia and dehydration Demographic processes and fire regimes interact to influence plant population persistence under changing climates Disturbance drives concordant functional biodiversity shifts across regions: new evidence from river eDNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1