{"title":"Theoretical Analysis of Contact Angle and Contact Angle Hysteresis of Wenzel Drops on Superhydrophobic Surfaces.","authors":"Yufeng Li, Junyan Liu, Jialong Dong, Yufeng Du, Jinchun Han, Yuanyuan Niu","doi":"10.3390/nano14231978","DOIUrl":null,"url":null,"abstract":"<p><p>Although understanding the wetting behavior of solid surfaces is crucial for numerous engineering applications, the mechanisms driving the motion of Wenzel drops on rough surfaces remain incompletely clarified. In this study, the contact angle and contact angle hysteresis of Wenzel drops on superhydrophobic surfaces are investigated from a thermodynamic perspective. The free energy of the system is theoretically analyzed, thereby determining the equilibrium contact angle. Based on the sessile drop method, the relationship between the free energy barrier and the drop volume is calculated quantitatively, enabling the determination of advancing and receding contact angles under zero free energy barrier conditions. The theoretical calculations agree well with the experimental data. These findings enhance the understanding of the interfacial interactions between Wenzel drops and superhydrophobic surfaces.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231978","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although understanding the wetting behavior of solid surfaces is crucial for numerous engineering applications, the mechanisms driving the motion of Wenzel drops on rough surfaces remain incompletely clarified. In this study, the contact angle and contact angle hysteresis of Wenzel drops on superhydrophobic surfaces are investigated from a thermodynamic perspective. The free energy of the system is theoretically analyzed, thereby determining the equilibrium contact angle. Based on the sessile drop method, the relationship between the free energy barrier and the drop volume is calculated quantitatively, enabling the determination of advancing and receding contact angles under zero free energy barrier conditions. The theoretical calculations agree well with the experimental data. These findings enhance the understanding of the interfacial interactions between Wenzel drops and superhydrophobic surfaces.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.