Loop-mediated isothermal amplification assays for the detection of antimicrobial resistance elements in Vibrio cholera.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-12-18 DOI:10.1186/s12859-024-06001-3
Daniel Antonio Negrón, Shipra Trivedi, Nicholas Tolli, David Ashford, Gabrielle Melton, Stephanie Guertin, Katharine Jennings, Bryan D Necciai, Shanmuga Sozhamannan, Bradley W Abramson
{"title":"Loop-mediated isothermal amplification assays for the detection of antimicrobial resistance elements in Vibrio cholera.","authors":"Daniel Antonio Negrón, Shipra Trivedi, Nicholas Tolli, David Ashford, Gabrielle Melton, Stephanie Guertin, Katharine Jennings, Bryan D Necciai, Shanmuga Sozhamannan, Bradley W Abramson","doi":"10.1186/s12859-024-06001-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The bacterium Vibrio cholerae causes diarrheal illness and can acquire genetic material leading to multiple drug resistance (MDR). Rapid detection of resistance-conferring mobile genetic elements helps avoid the prescription of ineffective antibiotics for specific strains. Colorimetric loop-mediated isothermal amplification (LAMP) assays provide a rapid and cost-effective means for detection at point-of-care since they do not require specialized equipment, require limited expertise to perform, and can take less than 30 min to perform in resource limited regions. LAMP output is a color change that can be viewed by eye, but it can be difficult to design primer sets, determine target specificity, and interpret subjective color changes.</p><p><strong>Methods: </strong>We developed an algorithm for the in silico design and evaluation of LAMP assays within the open-source PCR Signature Erosion Tool (PSET) and a computer vision application for the quantitative analysis of colorimetric outputs. First, Primer3 calculates LAMP primer sequence candidates with settings based on GC-content optimization. Next, PSET aligns the primer sequences of each assay against large sequence databases to calculate sufficient sequence similarity, coverage, and primer arrangement to the intended taxa, ultimately generating a confusion matrix. Finally, we tested assay candidates in the laboratory against synthetic constructs.</p><p><strong>Results: </strong>As an example, we generated new LAMP assays targeting drug resistance in V. cholerae and evaluated existing ones from the literature based on in silico target specificity and in vitro testing. Improvements in the design and testing of LAMP assays, with heightened target specificity and a simple analysis platform, increase utility for in-field applications. Overall, 9 of the 16 tested LAMP assays had positive signal through visual and computer vision-based detection methods developed here. Here we show LAMP assays tested on synthetic AMR gene targets for aph(6), varG, floR, qnrVC5, and almG, which allow for resistance to aminoglycosides, penicillins, carbapenems, phenicols, fluoroquinolones, and polymyxins respectively.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"384"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657800/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06001-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The bacterium Vibrio cholerae causes diarrheal illness and can acquire genetic material leading to multiple drug resistance (MDR). Rapid detection of resistance-conferring mobile genetic elements helps avoid the prescription of ineffective antibiotics for specific strains. Colorimetric loop-mediated isothermal amplification (LAMP) assays provide a rapid and cost-effective means for detection at point-of-care since they do not require specialized equipment, require limited expertise to perform, and can take less than 30 min to perform in resource limited regions. LAMP output is a color change that can be viewed by eye, but it can be difficult to design primer sets, determine target specificity, and interpret subjective color changes.

Methods: We developed an algorithm for the in silico design and evaluation of LAMP assays within the open-source PCR Signature Erosion Tool (PSET) and a computer vision application for the quantitative analysis of colorimetric outputs. First, Primer3 calculates LAMP primer sequence candidates with settings based on GC-content optimization. Next, PSET aligns the primer sequences of each assay against large sequence databases to calculate sufficient sequence similarity, coverage, and primer arrangement to the intended taxa, ultimately generating a confusion matrix. Finally, we tested assay candidates in the laboratory against synthetic constructs.

Results: As an example, we generated new LAMP assays targeting drug resistance in V. cholerae and evaluated existing ones from the literature based on in silico target specificity and in vitro testing. Improvements in the design and testing of LAMP assays, with heightened target specificity and a simple analysis platform, increase utility for in-field applications. Overall, 9 of the 16 tested LAMP assays had positive signal through visual and computer vision-based detection methods developed here. Here we show LAMP assays tested on synthetic AMR gene targets for aph(6), varG, floR, qnrVC5, and almG, which allow for resistance to aminoglycosides, penicillins, carbapenems, phenicols, fluoroquinolones, and polymyxins respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环介导等温扩增法检测霍乱弧菌抗微生物药物耐药因子。
背景:霍乱弧菌引起腹泻疾病,并可获得导致多重耐药(MDR)的遗传物质。快速检测具有耐药性的移动遗传因子有助于避免为特定菌株开出无效的抗生素处方。比色环介导等温扩增(LAMP)检测提供了一种快速且具有成本效益的检测方法,因为它们不需要专门的设备,需要有限的专业知识来执行,并且在资源有限的地区可以在不到30分钟的时间内完成。LAMP输出是一种可以通过眼睛看到的颜色变化,但很难设计引物组,确定目标特异性,并解释主观颜色变化。方法:我们在开源PCR特征侵蚀工具(PSET)中开发了一种用于LAMP检测的芯片设计和评估算法,并开发了一种用于比色输出定量分析的计算机视觉应用程序。首先,Primer3根据gc含量优化的设置计算LAMP引物序列候选序列。接下来,PSET将每个试验的引物序列与大型序列数据库进行比对,以计算序列相似性、覆盖率和引物与预期分类群的排列,最终生成混淆矩阵。最后,我们在实验室中对合成构建物进行了测试。结果:以霍乱弧菌耐药性为例,我们建立了新的LAMP检测方法,并基于硅靶特异性和体外测试对文献中已有的LAMP检测方法进行了评价。LAMP测定法的设计和测试的改进,提高了目标特异性和简单的分析平台,增加了现场应用的实用性。总体而言,16项LAMP检测中有9项通过基于视觉和计算机视觉的检测方法获得阳性信号。在这里,我们展示了在合成AMR基因靶标上进行的LAMP检测,这些靶标分别对氨基糖苷类、青霉素类、碳青霉烯类、酚类、氟喹诺酮类和多粘菌素具有耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis. HDN-DDI: a novel framework for predicting drug-drug interactions using hierarchical molecular graphs and enhanced dual-view representation learning. BAC-browser: the tool for synthetic biology. A comprehensive survey of scoring functions for protein docking models. Joint embedding-classifier learning for interpretable collaborative filtering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1