Piikun: an information theoretic toolkit for analysis and visualization of species delimitation metric space.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-12-18 DOI:10.1186/s12859-024-05997-y
Jeet Sukumaran, Marina Meila
{"title":"Piikun: an information theoretic toolkit for analysis and visualization of species delimitation metric space.","authors":"Jeet Sukumaran, Marina Meila","doi":"10.1186/s12859-024-05997-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions.</p><p><strong>Results: </strong>Piikun is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions.</p><p><strong>Conclusions: </strong>Piikun is available under the MIT license from its public repository ( https://github.com/jeetsukumaran/piikun ), and can be installed locally using the Python package manager 'pip'.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"385"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657818/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05997-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Existing software for comparison of species delimitation models do not provide a (true) metric or distance functions between species delimitation models, nor a way to compare these models in terms of relative clustering differences along a lattice of partitions.

Results: Piikun is a Python package for analyzing and visualizing species delimitation models in an information theoretic framework that, in addition to classic measures of information such as the entropy and mutual information [1], provides for the calculation of the Variation of Information (VI) criterion [2], a true metric or distance function for species delimitation models that is aligned with the lattice of partitions.

Conclusions: Piikun is available under the MIT license from its public repository ( https://github.com/jeetsukumaran/piikun ), and can be installed locally using the Python package manager 'pip'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piikun:一个用于物种定界度量空间分析和可视化的信息理论工具包。
背景:现有的物种划界模型比较软件没有提供物种划界模型之间的(真正的)度量或距离函数,也没有一种方法来比较这些模型沿着分区格的相对聚类差异。Piikun是一个Python包,用于在信息理论框架中分析和可视化物种划界模型,除了熵和互信息[1]等经典信息度量外,还提供了信息变异(VI)标准[2]的计算,这是一个与分区格对齐的物种划界模型的真正度量或距离函数。结论:Piikun在MIT许可下可从其公共存储库(https://github.com/jeetsukumaran/piikun)获得,并且可以使用Python包管理器“pip”在本地安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis. HDN-DDI: a novel framework for predicting drug-drug interactions using hierarchical molecular graphs and enhanced dual-view representation learning. BAC-browser: the tool for synthetic biology. A comprehensive survey of scoring functions for protein docking models. Joint embedding-classifier learning for interpretable collaborative filtering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1