{"title":"Posture-invariant myoelectric control with self-calibrating random forests.","authors":"Xinyu Jiang, Chenfei Ma, Kianoush Nazarpour","doi":"10.3389/fnbot.2024.1462023","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Myoelectric control systems translate different patterns of electromyographic (EMG) signals into the control commands of diverse human-machine interfaces via hand gesture recognition, enabling intuitive control of prosthesis and immersive interactions in the metaverse. The effect of arm position is a confounding factor leading to the variability of EMG characteristics. Developing a model with its characteristics and performance invariant across postures, could largely promote the translation of myoelectric control into real world practice.</p><p><strong>Methods: </strong>Here we propose a self-calibrating random forest (RF) model which can (1) be pre-trained on data from many users, then one-shot calibrated on a new user and (2) self-calibrate in an unsupervised and autonomous way to adapt to varying arm positions.</p><p><strong>Results: </strong>Analyses on data from 86 participants (66 for pre-training and 20 in real-time evaluation experiments) demonstrate the high generalisability of the proposed RF architecture to varying arm positions.</p><p><strong>Discussion: </strong>Our work promotes the use of simple, explainable, efficient and parallelisable model for posture-invariant myoelectric control.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1462023"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652494/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1462023","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Myoelectric control systems translate different patterns of electromyographic (EMG) signals into the control commands of diverse human-machine interfaces via hand gesture recognition, enabling intuitive control of prosthesis and immersive interactions in the metaverse. The effect of arm position is a confounding factor leading to the variability of EMG characteristics. Developing a model with its characteristics and performance invariant across postures, could largely promote the translation of myoelectric control into real world practice.
Methods: Here we propose a self-calibrating random forest (RF) model which can (1) be pre-trained on data from many users, then one-shot calibrated on a new user and (2) self-calibrate in an unsupervised and autonomous way to adapt to varying arm positions.
Results: Analyses on data from 86 participants (66 for pre-training and 20 in real-time evaluation experiments) demonstrate the high generalisability of the proposed RF architecture to varying arm positions.
Discussion: Our work promotes the use of simple, explainable, efficient and parallelisable model for posture-invariant myoelectric control.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.