Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-20 DOI:10.1126/sciadv.adq3484
Feng Guo, Kang Liu, Yangyi Qiao, YongMin Zheng, Chenguang Liu, Yi Wu, Zhonghai Zhang, Wankui Jiang, Yujia Jiang, Fengxue Xin, Min Jiang, Wenming Zhang
{"title":"Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming","authors":"Feng Guo, Kang Liu, Yangyi Qiao, YongMin Zheng, Chenguang Liu, Yi Wu, Zhonghai Zhang, Wankui Jiang, Yujia Jiang, Fengxue Xin, Min Jiang, Wenming Zhang","doi":"10.1126/sciadv.adq3484","DOIUrl":null,"url":null,"abstract":"Methanol, as a non-edible feedstock, offers a promising sustainable alternative to sugar-based substrates in biochemical production. Despite progress in engineering methanol assimilation in nonmethylotrophs, the full transformation into methanol-dependent synthetic methylotrophs remains a formidable challenge. Here, moving beyond the conventional rational design principle, we engineered a synthetic methylotrophic <jats:italic>Saccharomyces cerevisiae</jats:italic> through genome rearrangement and adaptive laboratory evolution. This evolutionarily advanced strain unexpectedly shed the heterologous methanol assimilation pathway and demonstrated the robust growth on sole methanol. We discovered that the evolved strain likely realized methanol assimilation through a previously unidentified Adh2-Sfa1-rGly (ASrG) pathway, facilitating the concurrent assimilation of formate and CO <jats:sub>2</jats:sub> . Furthermore, the incorporation of electron transfer material C <jats:sub>3</jats:sub> N <jats:sub>4</jats:sub> quantum dots obviously enhanced methanol-dependent growth, emphasizing the role of energy availability in the ASrG pathway. This breakthrough introduces a previously unidentified C1 utilization pathway and highlights the exceptional adaptability and self-evolving capacity of the <jats:italic>S. cerevisiae</jats:italic> metabolic network.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"5 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq3484","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol, as a non-edible feedstock, offers a promising sustainable alternative to sugar-based substrates in biochemical production. Despite progress in engineering methanol assimilation in nonmethylotrophs, the full transformation into methanol-dependent synthetic methylotrophs remains a formidable challenge. Here, moving beyond the conventional rational design principle, we engineered a synthetic methylotrophic Saccharomyces cerevisiae through genome rearrangement and adaptive laboratory evolution. This evolutionarily advanced strain unexpectedly shed the heterologous methanol assimilation pathway and demonstrated the robust growth on sole methanol. We discovered that the evolved strain likely realized methanol assimilation through a previously unidentified Adh2-Sfa1-rGly (ASrG) pathway, facilitating the concurrent assimilation of formate and CO 2 . Furthermore, the incorporation of electron transfer material C 3 N 4 quantum dots obviously enhanced methanol-dependent growth, emphasizing the role of energy availability in the ASrG pathway. This breakthrough introduces a previously unidentified C1 utilization pathway and highlights the exceptional adaptability and self-evolving capacity of the S. cerevisiae metabolic network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Ain't no stoppin' us now…. Meeting metformin again for the first time. The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1