Approaching the standard quantum limit of a Rydberg-atom microwave electrometer

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-12-20 DOI:10.1126/sciadv.ads0683
Hai-Tao Tu, Kai-Yu Liao, Hong-Lei Wang, Yi-Fei Zhu, Si-Yuan Qiu, Hao Jiang, Wei Huang, Wu Bian, Hui Yan, Shi-Liang Zhu
{"title":"Approaching the standard quantum limit of a Rydberg-atom microwave electrometer","authors":"Hai-Tao Tu, Kai-Yu Liao, Hong-Lei Wang, Yi-Fei Zhu, Si-Yuan Qiu, Hao Jiang, Wei Huang, Wu Bian, Hui Yan, Shi-Liang Zhu","doi":"10.1126/sciadv.ads0683","DOIUrl":null,"url":null,"abstract":"The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.2 × 10 <jats:sup>5</jats:sup> laser-cooled atoms to implement the microwave heterodyne detection. By mitigating various noises and strategically optimizing the electrometer parameters, our study reduces the equivalent noise temperature by a factor of 20 and achieves an electric field sensitivity of 10.0 nV cm <jats:sup>−1</jats:sup> Hz <jats:sup>−1/2</jats:sup> , lastly reaching a factor of 2.6 above the standard quantum limit. Our work also provides valuable insights into the inherent capabilities and limitations of Rydberg electrometers, offering superior sensitivity in detecting weak microwave signals for numerous applications.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"83 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads0683","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.2 × 10 5 laser-cooled atoms to implement the microwave heterodyne detection. By mitigating various noises and strategically optimizing the electrometer parameters, our study reduces the equivalent noise temperature by a factor of 20 and achieves an electric field sensitivity of 10.0 nV cm −1 Hz −1/2 , lastly reaching a factor of 2.6 above the standard quantum limit. Our work also provides valuable insights into the inherent capabilities and limitations of Rydberg electrometers, offering superior sensitivity in detecting weak microwave signals for numerous applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Ain't no stoppin' us now…. Meeting metformin again for the first time. The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux Evolutionary engineering of Saccharomyces cerevisiae : Crafting a synthetic methylotroph via self-reprogramming Approaching the standard quantum limit of a Rydberg-atom microwave electrometer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1